G2TT
来源类型Discussion paper
规范类型论文
来源IDDP12716
DP12716 Quantile Factor Models
Juan Dolado; Liang Chen; Jesus Gonzalo
发表日期2018-02-12
出版年2018
语种英语
摘要Quantile factor models (QFM) represent a new class of factor models for high-dimensional panel data. Unlike approximate factor models (AFM), which only extract mean factors, QFM also allow unobserved factors to shift other relevant parts of the distributions of observables. We propose a quantile regression approach, labeled Quantile Factor Analysis (QFA), to consistently estimate all the quantile-dependent factors and loadings. Their asymptotic distributions are established using a kernel-smoothed version of the QFA estimators. Two consistent model selection criteria, based on information criteria and rank minimization, are developed to determine the number of factors at each quantile. QFA estimation remains valid even when the idiosyncratic errors exhibit heavy-tailed distributions. An empirical application illustrates the usefulness of QFA by highlighting the role of extra factors in the forecasts of US GDP growth and inflation rates using a large set of predictors.
主题Financial Economics
URLhttps://cepr.org/publications/dp12716-0
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/541528
推荐引用方式
GB/T 7714
Juan Dolado,Liang Chen,Jesus Gonzalo. DP12716 Quantile Factor Models. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Juan Dolado]的文章
[Liang Chen]的文章
[Jesus Gonzalo]的文章
百度学术
百度学术中相似的文章
[Juan Dolado]的文章
[Liang Chen]的文章
[Jesus Gonzalo]的文章
必应学术
必应学术中相似的文章
[Juan Dolado]的文章
[Liang Chen]的文章
[Jesus Gonzalo]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。