G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w10914
来源IDWorking Paper 10914
Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies
Eric Ghysels; Pedro Santa-Clara; Rossen Valkanov
发表日期2004-11-22
出版年2004
语种英语
摘要We consider various MIDAS (Mixed Data Sampling) regression models to predict volatility. The models differ in the specification of regressors (squared returns, absolute returns, realized volatility, realized power, and return ranges), in the use of daily or intra-daily (5-minute) data, and in the length of the past history included in the forecasts. The MIDAS framework allows us to compare models across all these dimensions in a very tightly parameterized fashion. Using equity return data, we find that daily realized power (involving 5-minute absolute returns) is the best predictor of future volatility (measured by increments in quadratic variation) and outperforms model based on realized volatility (i.e. past increments in quadratic variation). Surprisingly, the direct use of high-frequency (5-minute) data does not improve volatility predictions. Finally, daily lags of one to two months are sucient to capture the persistence in volatility. These findings hold both in- and out-of-sample.
主题Financial Economics ; Financial Markets
URLhttps://www.nber.org/papers/w10914
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/568549
推荐引用方式
GB/T 7714
Eric Ghysels,Pedro Santa-Clara,Rossen Valkanov. Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies. 2004.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w10914.pdf(369KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Eric Ghysels]的文章
[Pedro Santa-Clara]的文章
[Rossen Valkanov]的文章
百度学术
百度学术中相似的文章
[Eric Ghysels]的文章
[Pedro Santa-Clara]的文章
[Rossen Valkanov]的文章
必应学术
必应学术中相似的文章
[Eric Ghysels]的文章
[Pedro Santa-Clara]的文章
[Rossen Valkanov]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w10914.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。