结论 |
Characterizing the Extent of Contamination- Rapidly deployable sensors capable of surveying large areas quickly are critical for both initial characterization and on-going monitoring of a radioactive dispersal event.
- In addition, more finely grained local sensors suitable to support the establishment and maintenance of safe corridors and staging areas along with hardened unmanned sensor-carrying systems would be needed.
- Gaps in knowledge about the extent of contamination early in the Fukushima disaster prevented fully effective responses by officials. Thus, information technologies to quickly and accurately share and display sensors' radiological measurements in real time are needed to support disaster response.
Preventing Radiation Damage and Further Dispersion of Material- Better individual monitoring and protection, such as improved hazmat suits, personal dosimetry, and personalized medical approaches to radiation hazards for humans, is needed to ensure worker and resident safety. The lack of such technologies contributed to the negative public perceptions and fear about the event.
- Where people must venture into contaminated areas, having means of protecting them for long periods without imposing great physical strain would be valuable. One approach might be the use of "exoskeleton" suits that would shield them with an outer layer of lead while also providing them with filtered air and enhanced strength.
- Approaches to preventing land agricultural uptake of cesium and strontium exist today, facilitating the safety of locally grown food. However, prevention of sea-life contamination remains difficult. Public perceptions about the safety of local food motivate technological development in this discipline.
- Dust-suppression methods in the local area were effective, but large-scale water management remains challenging.
Decontamination and Collection of Radioactive Material- Open-area decontamination methods for structures and land are available but labor-intensive on the large scale found at Fukushima Dai-Ichi.
- Open-area decontamination of water at large scale remains unsolved, although chemical methods show promise.
- Biological methods of decontaminating agricultural areas show promise, especially if they can cost-effectively reduce labor requirements for decontaminating large areas.
Disposing of Contaminated Materials- The large scale of contaminated material — many thousands of tons of dirt, debris, and water — preclude easy isolation from the general population. Unfortunately, no known method exists to accelerate radioactive decay at this large scale, so the material must be isolated and stored.
- Nuclear burning to accelerate decay could be investigated as a potential future technology, but particular attention should be given to its scaling potential.
- In addition, public concern about local storage of nuclear-contaminated material will powerfully shape the choice of technological solutions, so developers should consider the public acceptance of such technologies before embarking on an extensive program of work.
Robotics Issues- Unmanned ground vehicles for environmental characterization and response need to be tailored to the needs of austere, contaminated environments. Specifically, they require improved mobility to overcome diverse types of obstacles, high degrees of autonomy due to limited communications bandwidth, the ability to deftly manipulate objects and penetrate small spaces, long dwell times in the environment, and for those systems in the most hazardous areas, radiation hardening through improved circuit design or shielding.
Lessons from the Chernobyl Experience- Although astounding societal technological progress has been made in the 25-plus years since the Chernobyl disaster, many of the nuclear mitigation techniques first used by the Soviets in 1986 have changed surprising little.
|