G2TT
来源类型FEEM working papers "Note di lavoro" series
规范类型论文
Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach
Nicolas Gravel; Sebastian Bervoets
发表日期2004
出处Climate Change and Sustainable Development
出版年2004
语种英语
摘要This paper provides an axiomatic characterization of two rules for comparing alternative sets of objects on the basis of the diversity that they offer. The framework considered assumes a finite universe of objects and an a priori given ordinal quadernary relation that compares alternative pairs of objects on the basis of their ordinal dissimilarity. Very few properties of this quadernary relation are assumed (beside completeness, transitivity and a very natural form of symmetry). The two rules that we characterize are the maxi-max criterion and the lexi-max criterion. The maxi-max criterion considers that a set is more diverse than another if and only if the two objects that are the most dissimilar in the former are weakly as dissimilar as the two most dissimilar objects in the later. The lexi-max criterion is defined as usual as the lexicographic extension of the maxi-max criterion. Some connections with the broader issue of measuring freedom of choice are also provided.
特色分类D63,D69,Q20
关键词Diversity,Measurement,Axioms,Freedom of choice
URLhttps://www.feem.it/en/publications/feem-working-papers-note-di-lavoro-series/appraising-diversity-with-an-ordinal-notion-of-similarity-an-axiomatic-approach/
来源智库Fondazione Eni Enrico Mattei (Italy)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/116997
推荐引用方式
GB/T 7714
Nicolas Gravel,Sebastian Bervoets. Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach. 2004.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
NDL2004-045.pdf(645KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Nicolas Gravel]的文章
[Sebastian Bervoets]的文章
百度学术
百度学术中相似的文章
[Nicolas Gravel]的文章
[Sebastian Bervoets]的文章
必应学术
必应学术中相似的文章
[Nicolas Gravel]的文章
[Sebastian Bervoets]的文章
相关权益政策
暂无数据
收藏/分享
文件名: NDL2004-045.pdf
格式: Adobe PDF

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。