Gateway to Think Tanks
来源类型 | FEEM working papers "Note di lavoro" series |
规范类型 | 论文 |
Bi and Branching Strict Nash Networks in Two-way Flow Models: a Generalized Sufficient Condition | |
Banchongsan Charoensook | |
发表日期 | 2018 |
出处 | Economic Theory |
出版年 | 2018 |
语种 | 英语 |
摘要 | Bi and branching networks are two classes of minimal networks often found in the literatures of two-way flow Strict Nash networks. Why so? In this paper, we answer this question by establishing a generalized condition that holds together many models in the literature, and then show that this condition is sufficient to guarantee their common result: every non-empty component of minimal SNN is either a branching or Bi network. This paper, therefore, contributes to the literature by providing a generalization of several existing works in the literature of two-way flow Strict Nash networks. *** Suggested citation: Charoensook, B. (2018), 'Bi and Branching Strict Nash Networks in Two-way Flow Models: a Generalized Sufficient Condition', Nota di Lavoro 12.2018, Milano, Italy: Fondazione Eni Enrico Mattei |
特色分类 | C72;D85 |
关键词 | Network Formation Strict Nash Network Two-way Flow Network Branching Network |
URL | https://www.feem.it/en/publications/feem-working-papers-note-di-lavoro-series/bi-and-branching-strict-nash-networks-in-two-way-flow-models-a-generalized-sufficient-condition/ |
来源智库 | Fondazione Eni Enrico Mattei (Italy) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/118586 |
推荐引用方式 GB/T 7714 | Banchongsan Charoensook. Bi and Branching Strict Nash Networks in Two-way Flow Models: a Generalized Sufficient Condition. 2018. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
cover-front30.jpg(90KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 | ||
ndl2018-012.pdf(545KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Banchongsan Charoensook]的文章 |
百度学术 |
百度学术中相似的文章 |
[Banchongsan Charoensook]的文章 |
必应学术 |
必应学术中相似的文章 |
[Banchongsan Charoensook]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。