G2TT
来源类型Monograph (IIASA Interim Report)
规范类型报告
Risk and Extended Expected Utility Functions: Optimization Approaches.
Ermoliev YM; Norkin VI
发表日期2003
出版者IIASA, Laxenburg, Austria: IR-03-033
出版年2003
语种英语
摘要The proper analysis of policies under uncertainties has to deal with "hit-or-miss" type situations by using approximate risk functions, which can also be viewed as so-called extended expected utility functions. Formally this often requires the solution of dynamic stochastic optimization problems with discontinuous indicator functions of such events as ruin, underestimating costs and overestimating benefits. The available optimization techniques, in particular formulas for derivatives of risk functions, may not be applicable due to explicitly unknown probability distributions and essential discontinuities. The aim of this paper is to develop a solution technique by smoothing the risk function over certain parameters, rather than over decision variables as in the classical distribution (generalized functions) theory. For smooth approximations we obtain gradients in the form of expectations of stochastic vectors which can be viewed as a form of stochastic gradients for the original risk function. We pay special attention to optimization of risk functions defined on trajectories of discrete time stochastic processes with stopping times, which is critically important for analyzing regional vulnerability against catastrophes.
主题Institute Scholars (INS)
URLhttp://pure.iiasa.ac.at/id/eprint/7050/
来源智库International Institute for Applied Systems Analysis (Austria)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/125252
推荐引用方式
GB/T 7714
Ermoliev YM,Norkin VI. Risk and Extended Expected Utility Functions: Optimization Approaches.. 2003.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
IR-03-033.pdf(258KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ermoliev YM]的文章
[Norkin VI]的文章
百度学术
百度学术中相似的文章
[Ermoliev YM]的文章
[Norkin VI]的文章
必应学术
必应学术中相似的文章
[Ermoliev YM]的文章
[Norkin VI]的文章
相关权益政策
暂无数据
收藏/分享
文件名: IR-03-033.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。