G2TT
来源类型Monograph (IIASA Interim Report)
规范类型报告
A Comparison of the Classification of Vegetation Characteristics by Spectral Mixture Analysis and Standard Classifiers on Remotely Sensed Imagery within the Siberia Region.
Tan S-Y
发表日期2003
出版者IIASA, Laxenburg, Austria: IR-03-020
出版年2003
语种英语
摘要As an alternative to the traditional method of inferring vegetation cover characteristics from satellite data by classifying each pixel into a specific land cover type based on predefined classification schemes, the Spectral Mixture Analysis (SMA) method is applied to images of the Siberia region. A linear mixture model was applied to determine proportional estimates of land cover for, (a) agriculture and floodplain soils, (b) broadleaf, and (c) conifer classes, in pixels of 30 m resolution Landsat data. In order to evaluate the areal estimates, results were compared with ground truth data, as well as those estimates derived from more sophisticated method of image classification, providing improved estimates of endmember values and subpixel areal estimates of vegetation cover classes than the traditional approach of using predefined classification schemes with discrete numbers of cover types. This technique enables the estimation of proportional land cover type in a single pixel and could potentially serve as a tool for deriving improved estimates of vegetation parameters that are necessary for modeling carbon processes.
主题Forestry (FOR)
URLhttp://pure.iiasa.ac.at/id/eprint/7061/
来源智库International Institute for Applied Systems Analysis (Austria)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/125263
推荐引用方式
GB/T 7714
Tan S-Y. A Comparison of the Classification of Vegetation Characteristics by Spectral Mixture Analysis and Standard Classifiers on Remotely Sensed Imagery within the Siberia Region.. 2003.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
IR-03-020.pdf(766KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tan S-Y]的文章
百度学术
百度学术中相似的文章
[Tan S-Y]的文章
必应学术
必应学术中相似的文章
[Tan S-Y]的文章
相关权益政策
暂无数据
收藏/分享
文件名: IR-03-020.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。