G2TT
来源类型Article
规范类型其他
DOI10.1016/0270-0255(86)90085-0
Evaluating the effects of observed and unobserved diffusion processes in survival analysis of longitudinal data.
Yashin AI; Manton KG; Stallard E
发表日期1986
出处Mathematical Modelling 7 (9-12): 1353-1363
出版年1986
语种英语
摘要In biostatistical, epidemiological and demographic studies of human survival it is often necessary to consider the dynamics of physiological processes and their influences on observed mortality rates. The parameters of a stochastic covariate process can be estimated using a conditional Gaussian strategy based on the mortality model presented in M.A. Woodbury and K.G. Manton, A random walk model of human mortality and aging. Theor. Popul. Biol. 11, 37–48 (1977) and A.I. Yashin, K.G. Manton, and J.W. Vaupel, Mortality and aging in a heterogeneous population: A stochastic process model with observed and unobserved variables. Theor. Popul. Biol., in press. (1985). The utility of this approach for modeling survival in a longitudinally followed population is discussed—especially in the context of conducing coordinated analyses of multiple similarly constituted databases. Furthermore, the conditional Gaussian approach offers several substantive and computational advantages over the Cameron- Martin approach R.H. Cameron and W.T. Martin, The Wiener measure of Hilbert neighborhoods in the space of real continuous functions.
主题World Population (POP)
URLhttp://pure.iiasa.ac.at/id/eprint/12542/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/126941
推荐引用方式
GB/T 7714
Yashin AI,Manton KG,Stallard E. Evaluating the effects of observed and unobserved diffusion processes in survival analysis of longitudinal data.. 1986.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yashin AI]的文章
[Manton KG]的文章
[Stallard E]的文章
百度学术
百度学术中相似的文章
[Yashin AI]的文章
[Manton KG]的文章
[Stallard E]的文章
必应学术
必应学术中相似的文章
[Yashin AI]的文章
[Manton KG]的文章
[Stallard E]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。