G2TT
来源类型Article
规范类型其他
DOI10.1016/S0305-0548(96)00021-4
Artificial neural network representations for hierarchical preference structures.
Stam A; Sun M; Haines M
发表日期1996
出处Computers & Operations Research 23 (12): 1191-1201
出版年1996
语种英语
摘要In this paper, we introduce two artificial neural network formulations that can be used to assess the preference ratings from the pairwise comparison matrices of the Analytic Hierarchy Process. First, we introduce a modified Hopfield network that can determine the vector of preference ratings associated with a positive reciprocal comparison matrix. The dynamics of this network are mathematically equivalent to the power method, a widely used numerical method for computing the principal eigenvectors of square matrices. However, this Hopfield network representation is incapable of generalizing the preference patterns, and consequently is not suitable for approximating the preference ratings if the pairwise comparison judgments are imprecise. Second, we present a feed-forward neural network formulation that does have the ability to accurately approximate the preference ratings. We use a simulation experiment to verify the robustness of the feed-forward neural network formulation with respect to imprecise pairwise judgments. From the results of this experiment, we conclude that the feed-forward neural network formulation appears to be a powerful tool for analyzing discrete alternative multicriteria decision problems with imprecise or fuzzy ratio-scale preference judgments.
主题Institute Scholars (INS)
URLhttp://pure.iiasa.ac.at/id/eprint/4602/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/127462
推荐引用方式
GB/T 7714
Stam A,Sun M,Haines M. Artificial neural network representations for hierarchical preference structures.. 1996.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Stam A]的文章
[Sun M]的文章
[Haines M]的文章
百度学术
百度学术中相似的文章
[Stam A]的文章
[Sun M]的文章
[Haines M]的文章
必应学术
必应学术中相似的文章
[Stam A]的文章
[Sun M]的文章
[Haines M]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。