G2TT
来源类型Article
规范类型其他
DOI10.1007/BF00419366
Nonconvex differential calculus for infinite dimensional multifunctions.
Mordukhovich BS; Shao Y
发表日期1996
出处Set-Valued Analysis 4 (3): 205-236
出版年1996
语种英语
摘要The paper is concerned with generalized differentiation of set-valued mappings between Banach spaces. Our basic object is the so-called coderivative of multifunctions that was introduced earlier by the first author and has had a number of useful applications to nonlinear analysis, optimization, and control. This coderivative is a nonconvex-valued mapping which is related to sequential limits of Fréchet-like graphical normals but is not dual to any tangentially generated derivative of multifunctions. Using a variational approach, we develop a full calculus for the coderivative in the framework of Asplund spaces. The latter class is sufficiently broad and convenient for many important applications. Some useful calculus results are also obtained in general Banach spaces.
主题Dynamic Systems (DYN)
URLhttp://pure.iiasa.ac.at/id/eprint/4683/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/127535
推荐引用方式
GB/T 7714
Mordukhovich BS,Shao Y. Nonconvex differential calculus for infinite dimensional multifunctions.. 1996.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mordukhovich BS]的文章
[Shao Y]的文章
百度学术
百度学术中相似的文章
[Mordukhovich BS]的文章
[Shao Y]的文章
必应学术
必应学术中相似的文章
[Mordukhovich BS]的文章
[Shao Y]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。