Gateway to Think Tanks
来源类型 | Article |
规范类型 | 其他 |
DOI | 10.1016/S0377-2217(96)00018-5 |
Complex dynamics and control of arms race. | |
Feichtinger G; Behrens DA; Prskawetz A | |
发表日期 | 1997 |
出处 | European Journal of Operational Research 100 (1): 192-215 |
出版年 | 1997 |
语种 | 英语 |
摘要 | The aim of this paper is to show that asymmetric, nonlinear armament strategies may lead to chaotic motion in a discrete-time Richardson-type model on the arms race between two rival nations. Local bifurcation analysis reveals that 'complicated' dynamics will only occur if neither nation has an absolute advantage over the other one with respect to its level of armament and its capability to keep up the expenditures on armament. The calculation of Lyapunov exponents supports the existence of chaos. Since transitions to chaos can be identified with transitions to war, we use the Ott-Grebogi-Yorke-algorithm to stabilize the arms race model in the chaotic regime and improve the system's performance by making very small time-dependent changes of a parameter under control. |
主题 | World Population (POP) |
关键词 | Nonlinear system dynamics Arms race Local bifurcation theory Controlling chaos |
URL | http://pure.iiasa.ac.at/id/eprint/5060/ |
来源智库 | International Institute for Applied Systems Analysis (Austria) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/127599 |
推荐引用方式 GB/T 7714 | Feichtinger G,Behrens DA,Prskawetz A. Complex dynamics and control of arms race.. 1997. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。