G2TT
来源类型Article
规范类型其他
DOI10.1111/1467-842X.00049
Theory & Methods: Distance Testing for Selecting the Best Population.
Futschik A; Pflug G
发表日期1998
出处Australian & New Zealand Journal of Statistics 40 (4): 443-464
出版年1998
语种英语
摘要Consider testing the null hypothesis that a given population has location parameter greater than or equal to the largest location parameter of k competing populations. This paper generalizes tests proposed by Gupta and Bartholomew by considering tests based on p-distances from the parameter estimate to the null parameter space. It is shown that all tests are equivalent when k[RIGHTWARDS ARROW]∞ for a class of distributions that includes the normal and the uniform. The paper proposes the use of adaptive quantiles. Under suitable assumptions the resulting tests are asymptotically equivalent to the uniformly most powerful test for the case that the location parameters of all but one of the populations are known. The increase in power obtained by using adaptive tests is confirmed by a simulation study.
主题Risk, Modeling, Policy (RMP)
关键词subset selection simple tree order distance tests efficient adaptive testing order restricted inference extreme order statistics
URLhttp://pure.iiasa.ac.at/id/eprint/5405/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/127761
推荐引用方式
GB/T 7714
Futschik A,Pflug G. Theory & Methods: Distance Testing for Selecting the Best Population.. 1998.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Futschik A]的文章
[Pflug G]的文章
百度学术
百度学术中相似的文章
[Futschik A]的文章
[Pflug G]的文章
必应学术
必应学术中相似的文章
[Futschik A]的文章
[Pflug G]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。