G2TT
来源类型Article
规范类型其他
DOI10.1007/s00285-003-0213-y
On the concept of attractor in community-dynamical processes II: The case of structured populations.
Gyllenberg M; Jacobs FJA; Metz JAJ
发表日期2003
出处Journal of Mathematical Biology 47 (3): 235-248
出版年2003
语种英语
摘要In Part I of this paper Jacobs and Metz (2003) extended the concept of the Conley-Ruelle, or chain, attractor in a way relevant to unstructured community ecological models. Their modified theory incorporated the facts that certain parts of the boundary of the state space correspond to the situation of at least one species being extinct and that an extinct species can not be rescued by noise. In this part we extend the theory to communities of physiologically structured populations. One difference between the structured and unstructured cases is that a structured population may be doomed to extinction and not rescuable by any biologically relevant noise before actual extinction has taken place. Another difference is that in the structured case we have to use different topologies to define continuity of orbits and to measure noise. Biologically meaningful noise is furthermore related to the linear structure of the community state space. The construction of extinction preserving chain attractors developed in this paper takes all these points into account.
主题Adaptive Dynamics Network (ADN)
关键词Environmental noise Pseudoorbit Chain attractor Weak-topology Physiologically structured populations Community dynamics Extinction
URLhttp://pure.iiasa.ac.at/id/eprint/6823/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/128217
推荐引用方式
GB/T 7714
Gyllenberg M,Jacobs FJA,Metz JAJ. On the concept of attractor in community-dynamical processes II: The case of structured populations.. 2003.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gyllenberg M]的文章
[Jacobs FJA]的文章
[Metz JAJ]的文章
百度学术
百度学术中相似的文章
[Gyllenberg M]的文章
[Jacobs FJA]的文章
[Metz JAJ]的文章
必应学术
必应学术中相似的文章
[Gyllenberg M]的文章
[Jacobs FJA]的文章
[Metz JAJ]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。