G2TT
来源类型Article
规范类型其他
DOI10.1007/s00285-009-0299-y
Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example.
Diekmann O; Gyllenberg M; Metz JAJ; Nakaoka S; de Roos AM
发表日期2010
出处Journal of Mathematical Biology 61 (2): 277-318
出版年2010
语种英语
摘要We consider the interaction between a general size-structured consumer population and an unstructured resource. We show that stability properties and bifurcation phenomena can be understood in terms of solutions of a system of two delay equations (a renewal equation for the consumer population birth rate coupled to a delay differetial equation for the resource concentration). As many results for such systems are available, we can draw rigorous conclusions concerning dynamical behaviour from an analysis of a characteristic equation. We derive the characteristic equation for a fairly general class of population models, including those based on the Kooijman-Metz Daphnia model and a model introduced by Gurney-Nisbet and Jones et al., and next obtain various ecological insights by analytical or numerical studies of special cases.
主题Evolution and Ecology (EEP)
关键词Physiologically structured population models Size-structure Delay equations Linearised sability Characteristic equation
URLhttp://pure.iiasa.ac.at/id/eprint/9250/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/129052
推荐引用方式
GB/T 7714
Diekmann O,Gyllenberg M,Metz JAJ,et al. Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example.. 2010.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
s00285-009-0299-y.pd(674KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Diekmann O]的文章
[Gyllenberg M]的文章
[Metz JAJ]的文章
百度学术
百度学术中相似的文章
[Diekmann O]的文章
[Gyllenberg M]的文章
[Metz JAJ]的文章
必应学术
必应学术中相似的文章
[Diekmann O]的文章
[Gyllenberg M]的文章
[Metz JAJ]的文章
相关权益政策
暂无数据
收藏/分享
文件名: s00285-009-0299-y.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。