G2TT
来源类型Article
规范类型其他
Maximum principle for infinite-horizon optimal control problems with dominating discount.
Aseev SM; Veliov VM
发表日期2012
出处Dynamics of Continuous, Discrete and Impulsive Systems, Series B (DCDIS-B) 19 (1): 43-63.
出版年2012
语种英语
摘要The paper revisits the issue of necessary optimality conditions for infinitehorizon optimal control problems. It is proved that the normal form maximum principle holds with an explicitly specified adjoint variable if an appropriate relation between the discount rate, the growth rate of the solution and the growth rate of the objective function is satisfied. The main novelty is that the result applies to general non-stationary systems and the optimal objective value needs not be finite (in which case the concept of overtaking optimality is employed). In two important particular cases it is shown that the current-value adjoint variable is characterized as the unique bounded solution of the adjoint equation. The results in this paper are applicable to several economic models for which the known optimality conditions fail.
主题Advanced Systems Analysis (ASA)
关键词Infinite horizon Pontryagin maximum principle Transversality conditions
URLhttp://pure.iiasa.ac.at/id/eprint/9874/
来源智库International Institute for Applied Systems Analysis (Austria)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/129481
推荐引用方式
GB/T 7714
Aseev SM,Veliov VM. Maximum principle for infinite-horizon optimal control problems with dominating discount.. 2012.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Aseev SM]的文章
[Veliov VM]的文章
百度学术
百度学术中相似的文章
[Aseev SM]的文章
[Veliov VM]的文章
必应学术
必应学术中相似的文章
[Aseev SM]的文章
[Veliov VM]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。