G2TT
来源类型Article
规范类型其他
DOI10.1142/S2010194512007817
The entropy of non-ergodic complex systems - A derivation from first principles.
Thurner S; Hanel R
发表日期2012
出处International Journal of Modern Physics: Conference Series 16: 105-115
出版年2012
语种英语
摘要In information theory the 4 Shannon-Khinchin (SK) axioms determine Boltzmann Gibbs entropy, S ~ -Sigma_i p_i log p_i, as the unique entropy. Physics is different from information in the sense that physical systems can be non-ergodic or non-Markovian. To characterize such strongly interacting, statistical systems - complex systems in particular - within a thermodynamical framework it might be necessary to introduce generalized entropies. A series of such entropies have been proposed in the past decades. Until now the understanding of their fundamental origin and their deeper relations to complex systems remains unclear. To clarify the situation we note that non-ergodicity explicitly violates the fourth SK axiom. We show that by relaxing this axiom the entropy generalizes to, S ~Sigma_i Gamma(d+1,1-c log p_i), where Gamma is the incomplete Gamma function, and c and d are scaling exponents. All recently proposed entropies compatible with the first 3 SK axioms appear to be special cases. We prove that each statistical system is uniquely characterized by the pair of the two scaling exponents (c, d), which defines equivalence classes for all systems. The corresponding distribution functions are special forms of Lambert-W exponentials containing, as special cases, Boltzmann, stretched exponential and Tsallis distributions (power-laws) - all widely abundant in nature. This derivation is the first ab initio justification for generalized entropies. We next show how the phasespace volume of a system is related to its generalized entropy, and provide a concise criterion when it is not of Boltzmann-Gibbs type but assumes a generalized form. We show that generalized entropies only become relevant when the dynamically (statistically) relevant fraction of degrees of freedom in a system vanishes in the thermodynamic limit. These are systems where the bulk of the degrees of freedom is frozen. Systems governed by generalized entropies are therefore systems whose phasespace volume effectively collapses to a lower-dimensional "surface". We explicitly illustrate the situation for accelerating random walks, and a spin system on a constant-conectancy network. We argue that generalized entropies should be relevant for self-organized critical systems such as sand piles, for spin systems which form meta-structures such as vortices, domains, instantons, etc., and for problems associated with anomalous diffusion.
主题Advanced Systems Analysis (ASA)
关键词Shannon-Khinchin axioms Generalized entropy Extensivity Phasespace volume Super-diffusion Ising on networks
URLhttp://pure.iiasa.ac.at/id/eprint/9905/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/129508
推荐引用方式
GB/T 7714
Thurner S,Hanel R. The entropy of non-ergodic complex systems - A derivation from first principles.. 2012.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Thurner S]的文章
[Hanel R]的文章
百度学术
百度学术中相似的文章
[Thurner S]的文章
[Hanel R]的文章
必应学术
必应学术中相似的文章
[Thurner S]的文章
[Hanel R]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。