Gateway to Think Tanks
来源类型 | Article |
规范类型 | 其他 |
Digital soil mapping from conventional field soil observations. | |
Balkovič J; Rampasekova Z; Hutar V; Sobocka J | |
发表日期 | 2013 |
出处 | Soil and Water Research 8 (1): 13-25. |
出版年 | 2013 |
语种 | 英语 |
摘要 | We tested the performance of a formalized digital soil mapping (DSM) approach comprising fuzzy k-means (FKM) classification and regression-kriging to produce soil type maps from a fine-scale soil observation network in Risnovce, Slovakia. We examine whether the soil profile descriptions collected merely by field methods fit into the statistical DSM tools and if they provide pedologically meaningful results for an erosion-affected area. Soil texture, colour, carbonates, stoniness and genetic qualifiers were estimated for a total of 111 soil profiles using conventional field methods. The data were digitized along semi-quantitative scales in 10-cm depth intervals to express the relative differences, and afterwards classified by the FKM method into four classes A-D: (i) Luvic Phaeozems (Anthric), (ii) Haplic Phaeozems (Anthric, Calcaric, Pachic), (iii) Calcic Cutanic Luvisols, and (iv) Haplic Regosols (Calcaric). To parameterize regression-kriging, membership values (MVs) to the above A-D class centroids were regressed against PCA-transformed terrain variables using the multiple linear regression method (MLR). MLR yielded significant relationships with R2 ranging from 23% to 47% (P < 0.001) for classes A, B and D, but only marginally significant for Luvisols of class C (R2 = 14%, P < 0.05). Given the results, Luvisols were then mapped by ordinary kriging and the rest by regression-kriging. A 'leave-one-out' cross-validation was calculated for the output maps yielding R2 of 33%, 56%, 22% and 42% for Luvic Phaeozems, Haplic Phaeozems, Luvisols and also Regosols, respectively (all P < 0.001). Additionally, the pixel-mixture visualization technique was used to draw a synthetic digital soil map. We conclude that the DSM model represents a fully formalized alternative to classical soil mapping at very fine scales, even when soil profile descriptions were collected merely by field estimation methods. Additionally to conventional soil maps it allows to address the diffuse character in soil cover, both in taxonomic and geographical interpretations. |
主题 | Ecosystems Services and Management (ESM) |
关键词 | Fuzzy k-means Pedometrics Regression-kriging Terrain |
URL | http://pure.iiasa.ac.at/id/eprint/10483/ |
来源智库 | International Institute for Applied Systems Analysis (Austria) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/129596 |
推荐引用方式 GB/T 7714 | Balkovič J,Rampasekova Z,Hutar V,et al. Digital soil mapping from conventional field soil observations.. 2013. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
Digital%20soil%20map(2903KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。