G2TT
来源类型Article
规范类型其他
DOI10.1073/pnas.1406071111
How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.
Hanel R; Thurner S; Gell-Mann M
发表日期2014
出处Proceedings of the National Academy of Sciences 111 (19): 6905-6910
出版年2014
语种英语
摘要The maximum entropy principle (MEP) is a method for obtaining the most likely distribution functions of observables from statistical systems by maximizing entropy under constraints. The MEP has found hundreds of applications in ergodic and Markovian systems in statistical mechanics, information theory, and statistics. For several decades there has been an ongoing controversy over whether the notion of the maximum entropy principle can be extended in a meaningful way to nonextensive, nonergodic, and complex statistical systems and processes. In this paper we start by reviewing how Boltzmann-Gibbs-Shannon entropy is related to multiplicities of independent random processes. We then show how the relaxation of independence naturally leads to the most general entropies that are compatible with the first three Shannon-Khinchin axioms, the (c,d)-entropies. We demonstrate that the MEP is a perfectly consistent concept for nonergodic and complex statistical systems if their relative entropy can be factored into a generalized multiplicity and a constraint term. The problem of finding such a factorization reduces to finding an appropriate representation of relative entropy in a linear basis. In a particular example we show that path-dependent random processes with memory naturally require specific generalized entropies. The example is to our knowledge the first exact derivation of a generalized entropy from the microscopic properties of a path-dependent random process.
主题Advanced Systems Analysis (ASA)
关键词Thermodynamics Out-of-equilibrium process Driven systems Random walk
URLhttp://pure.iiasa.ac.at/id/eprint/10922/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/129911
推荐引用方式
GB/T 7714
Hanel R,Thurner S,Gell-Mann M. How multiplicity determines entropy and the derivation of the maximum entropy principle for complex systems.. 2014.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
How%20multiplicity%2(685KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hanel R]的文章
[Thurner S]的文章
[Gell-Mann M]的文章
百度学术
百度学术中相似的文章
[Hanel R]的文章
[Thurner S]的文章
[Gell-Mann M]的文章
必应学术
必应学术中相似的文章
[Hanel R]的文章
[Thurner S]的文章
[Gell-Mann M]的文章
相关权益政策
暂无数据
收藏/分享
文件名: How%20multiplicity%20determines%20entropy%20and%20the%20derivation%20of%20the%20maximum%20entropy%20principle%20for%20complex%20systems.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。