G2TT
来源类型Article
规范类型其他
Hamilton-Jacobi equations in evolutionary games.
Krasovskii NA; Kryazhimskiy AV; Tarasyev AM
发表日期2014
出处Proceedings of the Institute of Mathematics and Mechanics UrB RAS 20 (3): 114-131.
出版年2014
语种英语
摘要Advanced methods of the theory of optimal control and generalized minimax solutions of Hamilton-Jacob equations are applied to a nonzero sum game between two large groups of agents in the framework of economic and biological evolutionary models. Random contacts of agents from different groups happen according to a control dynamic process which can be interpreted as Kolmogorov's differential equations. Coefficients of equations are not fixed a priori and can be chosen as control parameters on the feedback principle. Payoffs of coalitions are determined by the limit functionals on infinite horizon. The notion of a dynamical Nash equilibrium is considered in the class of control feedbacks. A solution is proposed basing on feedbacks maximizing with the guarantee the own payoffs. Guaranteed feedbacks are constructed in the framework of the theory of generalized solutions of Hamilton-Jacobi equations. The analytical formulas are obtained for corresponding value functions. The equilibrium trajectory is generated and its properties are investigated. The considered approach provides new qualitative results for the equilibrium trajectory in evolutionary games.
主题Advanced Systems Analysis (ASA)
关键词game theory algorithms of equilibrium search
URLhttp://pure.iiasa.ac.at/id/eprint/10797/
来源智库International Institute for Applied Systems Analysis (Austria)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/129955
推荐引用方式
GB/T 7714
Krasovskii NA,Kryazhimskiy AV,Tarasyev AM. Hamilton-Jacobi equations in evolutionary games.. 2014.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Krasovskii NA]的文章
[Kryazhimskiy AV]的文章
[Tarasyev AM]的文章
百度学术
百度学术中相似的文章
[Krasovskii NA]的文章
[Kryazhimskiy AV]的文章
[Tarasyev AM]的文章
必应学术
必应学术中相似的文章
[Krasovskii NA]的文章
[Kryazhimskiy AV]的文章
[Tarasyev AM]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。