G2TT
来源类型Article
规范类型其他
DOI10.3390/f5071753
Exploiting growing stock volume maps for large scale forest resource assessment: Cross-comparisons of ASAR- and PALSAR-based GSV estimates with forest inventory in Central Siberia.
Huettich C; Korets M; Bartalev S; Zharko V; Schepaschenko D; Shvidenko A; Schmullius C
发表日期2014
出处Forests 5 (7): 1753-1776
出版年2014
语种英语
摘要Growing stock volume is an important biophysical parameter describing the state and dynamics of the Boreal zone. Validation of growing stock volume (GSV) maps based on satellite remote sensing is challenging due to the lack of consistent ground reference data. The monitoring and assessment of the remote Russian forest resources of Siberia can only be done by integrating remote sensing techniques and interdisciplinary collaboration. In this paper, we assess the information content of GSV estimates in Central Siberian forests obtained at 25m from ALOS-PALSAR and 1km from ENVISAT-ASAR backscatter data. The estimates have been cross-compared with respect to forest inventory data showing 34% relative RMSE for the ASAR-based GSV retrievals and 39.4% for the PALSAR-based estimates of GSV. Fragmentation analyses using a MODIS-based land cover dataset revealed an increase of retrieval error with increasing fragmentation of the landscape. Cross-comparisons of multiple SAR-based GSV estimates helped to detect inconsistencies in the forest inventory data and can support an update of outdated forest inventory stands.
主题Ecosystems Services and Management (ESM)
关键词Forest inventory Biomass ALOS PALSAR ENVISAT ASAR Land cover fragmentation Siberia Boreal forest management
URLhttp://pure.iiasa.ac.at/id/eprint/10889/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/130019
推荐引用方式
GB/T 7714
Huettich C,Korets M,Bartalev S,et al. Exploiting growing stock volume maps for large scale forest resource assessment: Cross-comparisons of ASAR- and PALSAR-based GSV estimates with forest inventory in Central Siberia.. 2014.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huettich C]的文章
[Korets M]的文章
[Bartalev S]的文章
百度学术
百度学术中相似的文章
[Huettich C]的文章
[Korets M]的文章
[Bartalev S]的文章
必应学术
必应学术中相似的文章
[Huettich C]的文章
[Korets M]的文章
[Bartalev S]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。