G2TT
来源类型Article
规范类型其他
DOI10.1142/S0218127415400015
The branching bifurcation of Adaptive Dynamics.
Della Rossa F; Dercole F; Landi P
发表日期2015
出处International Journal of Bifurcation and Chaos 25 (7): p. 1540001
出版年2015
语种英语
摘要We unfold the bifurcation involving the loss of evolutionary stability of an equilibrium of the canoncal equation of Adaptive Dynamics (AD). The equation deterministically describes the expected long-term evolution of inheritable traits phenotypes or strategies-of coevolving populations, in the limit of rare and small mutations. In the vicinity of a stable equilibium of the AD canonical equation, a mutant type can invade and coexist with the present-resident-types, whereas the fittest always win far from equilibrium. After coexistence, residents and mutants effectively diversify, according to the enlarged canonical equation, only if natural selection favors outer rather than intermediate traits-the equilibrium being evolutionarily unstable, rather than stable. Though the conditions for evolutionary branching-the joint effect of resident-mutant coexistence and evolutionary instability- have been known for long, the unfolding of the bifurcation has remained a missing tile of AD, the reason being related to the nonsmoothness of the mutant invasion fitness after branching. In this paper, we develop a methodology that allows the approximation of the invasion fitness after branching in terms of the expansion of the (smooth) fitness before branching. We then derive a canonical model or the branching bifurcation and perform its unfolding around the loss of evolutionary stability. We cast our analysis in the simplest (but classical) setting of asexual, unstructured populations living in an isolated, homogeneous, and constant abiotic environment; individual traits are one-dimensional; intra-as well as inter-specific ecological interactions are described in the vicinity of a stationary regime.
主题Evolution and Ecology (EEP)
关键词Adaptive dynamics bifurcation evolutionary branching evolutionary stability invasion fitness singular strategy
URLhttp://pure.iiasa.ac.at/id/eprint/11413/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/130182
推荐引用方式
GB/T 7714
Della Rossa F,Dercole F,Landi P. The branching bifurcation of Adaptive Dynamics.. 2015.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
Della_Rossa_et_al_IJ(5092KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Della Rossa F]的文章
[Dercole F]的文章
[Landi P]的文章
百度学术
百度学术中相似的文章
[Della Rossa F]的文章
[Dercole F]的文章
[Landi P]的文章
必应学术
必应学术中相似的文章
[Della Rossa F]的文章
[Dercole F]的文章
[Landi P]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Della_Rossa_et_al_IJBC.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。