G2TT
来源类型Article
规范类型其他
DOI10.1016/j.spa.2015.05.014
Limit theorems and governing equations for Levy walks.
Magdziarz M; Scheffler HP; Straka P; Żebrowski P
发表日期2015
出处Stochastic Processes and their Applications 125 (11): 4021-4038
出版年2015
语种英语
摘要The Levy Walk is the process with continuous sample paths which arises from consecutive linear motions of i.i.d. lengths with i.i.d. directions. Assuming speed 1 and motions in the domain of beta-stable attraction, we prove functional limit theorems and derive governing pseudo-differential equations for the law of the walker's position. Both Levy Walk and its limit process are continuous and ballistic in the case beta epsilon(0,1). In the case beta epsilon (1,2), the scaling limit of the process is beta-stable and hence discontinuous. This result is surprising, because the scaling exponent 1/beta on the process level is seemingly unrelated to the scaling exponent 3-beta of the second moment. For beta=2, the scaling limit is Brownian motion.
主题Advanced Systems Analysis (ASA)
关键词Levy walk domain of attraction governing equation
URLhttp://pure.iiasa.ac.at/id/eprint/11397/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/130327
推荐引用方式
GB/T 7714
Magdziarz M,Scheffler HP,Straka P,et al. Limit theorems and governing equations for Levy walks.. 2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Magdziarz M]的文章
[Scheffler HP]的文章
[Straka P]的文章
百度学术
百度学术中相似的文章
[Magdziarz M]的文章
[Scheffler HP]的文章
[Straka P]的文章
必应学术
必应学术中相似的文章
[Magdziarz M]的文章
[Scheffler HP]的文章
[Straka P]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。