G2TT
来源类型Article
规范类型其他
DOI10.1016/j.jtbi.2015.05.020
Evolutionary dynamics of fairness on graphs with migration.
Wang X; Chen X; Wang L
发表日期2015
出处Journal of Theoretical Biology 380: 103-114
出版年2015
语种英语
摘要Individual migration plays a crucial role in evolutionary dynamics of population on networks. In this paper, we generalize the networked ultimatum game by diluting population structures as well as endowing individals with migration ability, and investigate evolutionary dynamics of fairness on graphs with migration in the ultimatum game. We first revisit the impact of node degree on the evolution of fairness. Interestingly, numerical simulations reveal that there exists an optimal value of node degree resulting in the maximal offer level of populations. Then we explore the effects of dilution and migration on the evolution of fairness, and find that both the dilution of population structures and the endowment of migration ability to individuals would lead to the drop of offer level, while the rise of acceptance level of populations. Notably, natural selection even favors the evolution of self-incompatible strategies, when either vacancy rate or migration rate exceeds a critical threshold. To confirm our simulation results, we also propose an analytical method to study the evolutionary dynamics of fairness on graphs with migration. This method can be applied to explore any games governed by pairwise interactions in finite populations.
主题Evolution and Ecology (EEP)
关键词Evolutionary game theory population structure
URLhttp://pure.iiasa.ac.at/id/eprint/11443/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/130353
推荐引用方式
GB/T 7714
Wang X,Chen X,Wang L. Evolutionary dynamics of fairness on graphs with migration.. 2015.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang X]的文章
[Chen X]的文章
[Wang L]的文章
百度学术
百度学术中相似的文章
[Wang X]的文章
[Chen X]的文章
[Wang L]的文章
必应学术
必应学术中相似的文章
[Wang X]的文章
[Chen X]的文章
[Wang L]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。