Gateway to Think Tanks
来源类型 | Article |
规范类型 | 其他 |
DOI | 10.1002/jae.2504 |
Forecasting with Global Vector Autoregressive Models: a Bayesian Approach. | |
Crespo Cuaresma J; Feldkircher M; Huber F | |
发表日期 | 2016 |
出处 | Journal of Applied Econometrics 31 (7): 1371-1391 |
出版年 | 2016 |
语种 | 英语 |
摘要 | This paper develops a Bayesian variant of global vector autoregressive (B-GVAR) models to forecast an international set of macroeconomic and financial variables. We propose a set of hierarchical priors and compare the predicive performance of B-GVAR models in terms of point and density forecasts for one-quarter-ahead and four-quarter-ahead forecast horizons. We find that forecasts can be improved by employing a global framework and hierarchical priors which induce country-specific degrees of shrinkage on the coefficients of the GVAR model. Forecasts from various B-GVAR specifications tend to outperform forecasts from a naive univariate model, a global model without shrinkage on the parameters and country-specific vector autoregressions. |
主题 | World Population (POP) |
URL | http://pure.iiasa.ac.at/id/eprint/11918/ |
来源智库 | International Institute for Applied Systems Analysis (Austria) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/130559 |
推荐引用方式 GB/T 7714 | Crespo Cuaresma J,Feldkircher M,Huber F. Forecasting with Global Vector Autoregressive Models: a Bayesian Approach.. 2016. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
Forecasting%20with%2(690KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。