G2TT
来源类型Article
规范类型其他
DOI10.1080/17421772.2016.1227468
Bayesian Variable Selection in Spatial Autoregressive Models.
Piribauer P; Crespo Cuaresma J
发表日期2016
出处Spatial Economic Analysis 11 (4): 457-479
出版年2016
语种英语
摘要This paper compares the performance of Bayesian variable selection approaches for spatial autoregressive models. It presents two alternative approaches that can be implemented using Gibbs sampling methods in a straightforward way and which allow one to deal with the problem of model uncertainty in spatial autoregressive models in a flexible and computationally efficient way. A simulation study shows that the variable selection approaches tend to outperform existing Bayesian model averaging techniques in terms of both in-sample predictive performance and computational efficiency. The alternative approaches are compared in an empirical application using data on economic growth for European NUTS-2 regions.
主题World Population (POP)
关键词determinants of economic growth Markov chain Monte Carlo methods model uncertainty Spatial autoregressive model variable selection
URLhttp://pure.iiasa.ac.at/id/eprint/13930/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/130791
推荐引用方式
GB/T 7714
Piribauer P,Crespo Cuaresma J. Bayesian Variable Selection in Spatial Autoregressive Models.. 2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Piribauer P]的文章
[Crespo Cuaresma J]的文章
百度学术
百度学术中相似的文章
[Piribauer P]的文章
[Crespo Cuaresma J]的文章
必应学术
必应学术中相似的文章
[Piribauer P]的文章
[Crespo Cuaresma J]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。