G2TT
来源类型Article
规范类型其他
DOI10.1088/1367-2630/aa611d
Understanding frequency distributions of path-dependent processes with non-multinomial maximum entropy approaches.
Hanel R; Corominas-Murtra B; Thurner S
发表日期2017
出处New Journal of Physics 19 (3): e033008
出版年2017
语种英语
摘要Path-dependent stochastic processes are often non-ergodic and observables can no longer be computed within the ensemble picture. The resulting mathematical difficulties pose severe limits to the analytical understanding of path-dependent processes. Their statistics is typically non-multinomial in the sense that the multiplicities of the occurrence of states is not a multinomial factor. The maximum entropy principle is tightly related to multinomial processes, non-interacting systems, and to the ensemble picture; it loses its meaning for path-dependent processes. Here we show that an equivalent to the ensemble picture exists for path-dependent processes, such that the non-multinomial statistics of the underlying dynamical process, by construction, is captured correctly in a functional that plays the role of a relative entropy. We demonstrate this for self-reinforcing Pólya urn processes, which explicitly generalize multinomial statistics. We demonstrate the adequacy of this constructive approach towards non-multinomial entropies by computing frequency and rank distributions of Pólya urn processes. We show how microscopic update rules of a path-dependent process allow us to explicitly construct a non-multinomial entropy functional, that, when maximized, predicts the time-dependent distribution function.
主题Advanced Systems Analysis (ASA)
URLhttp://pure.iiasa.ac.at/id/eprint/14521/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/130923
推荐引用方式
GB/T 7714
Hanel R,Corominas-Murtra B,Thurner S. Understanding frequency distributions of path-dependent processes with non-multinomial maximum entropy approaches.. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
Hanel_2017_New_J._Ph(1119KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hanel R]的文章
[Corominas-Murtra B]的文章
[Thurner S]的文章
百度学术
百度学术中相似的文章
[Hanel R]的文章
[Corominas-Murtra B]的文章
[Thurner S]的文章
必应学术
必应学术中相似的文章
[Hanel R]的文章
[Corominas-Murtra B]的文章
[Thurner S]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Hanel_2017_New_J._Phys._19_033008.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。