G2TT
来源类型Article
规范类型其他
Modelli Matematici di Storie D'Amore.
Rinaldi S; Della Rossa F
发表日期2017
出处Quaderni di Matematica
出版年2017
语种英语
摘要In questo articolo sono descritti i principali risultati finora ottenuti nel contesto della modellistica delle relazioni d’amore. I modelli sono di tipo descrittivo e stu- diano l’evoluzione dei sentimenti di due individui a partire da uno stato iniziale di indifferenza fino al raggiungimento di un regime sentimentale stazionario, periodi- co, o addirittura aperiodico. I modelli pi`u semplici sono costituiti da due equazioni differenziali (una per lei e una per lui) contenenti le informazioni essenziali sul mo- do con cui ogni individuo reagisce all’amore e al fascino dell’altro. Analizzando i modelli si possono ricavare, senza bisogno di alcun dato, le propriet`a fondamentali delle storie d’amore tra individui di varie categorie: sicuri o insicuri, non polarizzati o polarizzati (tra cui, platonici o sinergici), ... Cos`ı facendo si capisce, ad esempio, perch´e in coppie di individui sicuri ci sia una marcata tendenza ad aumentare il proprio fascino nella fase del corteggiamento, o perch´e piccole scoperte riguardanti il partner possano avere conseguenze (positive o negative) sorprendentemente grandi (catastrofi). Coppie di individui insicuri hanno invece una decisa propensione ad interrompere la relazione dopo un certo tempo. Infine, si scopre che regimi sentimentali altalenanti sono possibili a causa della copresenza di insicurezza e sinergismo e che le crisi ricorrenti possono lentamente sparire o attenuandosi o rarefacendosi nel tempo. In conclusione, per mezzo di questi modelli, propriet`a come quelle appena descritte, note agli psicanalisti che le hanno scoperte esercitando la loro professione, sono finalmente capite e spiegate: un risultato di indubbio valore. Tutti i fenomeni sopra citati riguardano coppie estremamente semplici, in cui l’evoluzione della storia d’amore `e dominata dalle interazioni tra i partner. Ma nella realt`a le relazioni interpersonali sono molto pi`u complesse perch´e risentono anche dell’ambiente sociale in cui la coppia vive. Successi e insuccessi nella pro- fessione, problemi di salute, lunghi e ripetuti periodi di assenza forzata, esistenza di importanti passioni, come quelle tipiche degli artisti, sono tutti fattori che in- terferiscono, anche notevolmente, con l’evoluzione dei sentimenti. Per modellizzare coppie cos`ı complesse, `e necessario far uso di modelli con tre o pi`u equazioni diffe- renziali, che possono essere analizzati solo per via numerica. Tali modelli possono spiegare anche regimi sentimentali caotici e, quindi, imprevedibili. Finora ci`o `e stato fatto solo per un numero limitato di casi, in particolare per relazioni tenden- zialmente instabili come quelle triangolari. Tuttavia, i risultati ottenuti sono cos`ı incoraggianti da far pensare che l’intero settore scientifico debba, in tempi brevi, espandersi significativamente. Il lettore che desideri approfondire quanto esposto in questo articolo potr`a fare riferimento al libro ”Modeling Love Dynamics”, pubblicato nel 2016 daWorld Scien- tific (autori: Sergio Rinaldi, Fabio Della Rossa, Fabio Dercole, Alessandra Gragnani e Pietro Landi). A chi sia invece interessato a una sintesi dell’argomento e a un breve commento sul senso e sul valore di questi studi si consigliano le seguenti rasse- gne critiche: “The equations of love”, di Marten Scheffer (http://blogs.nature. com/aviewfromthebridge/2016/05/20/the-equations-of-love), “A review of the book Modeling Love Dynamics”, di Gustav Feichtinger (http://www.oegor. at/files/news/news24.pdf) e “Perch`e Rossella O’Hara ha fallito? Se l’amore `e matematico”, di Anna Meldolesi (https://goo.gl/OjpKtD).
主题Evolution and Ecology (EEP)
URLhttp://pure.iiasa.ac.at/id/eprint/14369/
来源智库International Institute for Applied Systems Analysis (Austria)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/130998
推荐引用方式
GB/T 7714
Rinaldi S,Della Rossa F. Modelli Matematici di Storie D'Amore.. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
quaderni.pdf(2977KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rinaldi S]的文章
[Della Rossa F]的文章
百度学术
百度学术中相似的文章
[Rinaldi S]的文章
[Della Rossa F]的文章
必应学术
必应学术中相似的文章
[Rinaldi S]的文章
[Della Rossa F]的文章
相关权益政策
暂无数据
收藏/分享
文件名: quaderni.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。