G2TT
来源类型Article
规范类型其他
DOI10.1016/j.ifacol.2017.08.788
Application of optimal control and stabilization to an infinite time horizon problem under constraints.
Lebedev PD; Tarasyev AM
发表日期2017
出处IFAC-PapersOnLine 50 (1): 4057-4062
出版年2017
语种英语
摘要In modeling the dynamics of capital, the Ramsey equation coupled with the Cobb-Douglas production function is reduced to a linear differential equation by means of the Bernoulli substitution. This equation is used in the optimal growth problem with logarithmic preferences. We consider a vector field of the Hamiltonian system in the Pontryagin maximum principle, taking into account control constraints. We prove the existence of two alternative steady states, depending on the constraints. A proposed algorithm for constructing growth trajectories combines methods of open-loop control and closed-loop stabilizing control. Results are supported by modeling examples.
主题Ecosystems Services and Management (ESM)
关键词Optimal control Control applications Economic systems Steady states
URLhttp://pure.iiasa.ac.at/id/eprint/14897/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/131149
推荐引用方式
GB/T 7714
Lebedev PD,Tarasyev AM. Application of optimal control and stabilization to an infinite time horizon problem under constraints.. 2017.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lebedev PD]的文章
[Tarasyev AM]的文章
百度学术
百度学术中相似的文章
[Lebedev PD]的文章
[Tarasyev AM]的文章
必应学术
必应学术中相似的文章
[Lebedev PD]的文章
[Tarasyev AM]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。