G2TT
来源类型Article
规范类型其他
DOI10.1016/j.agsy.2017.04.006
Maintaining rice production while mitigating methane and nitrous oxide emissions from paddy fields in China: Evaluating tradeoffs by using coupled agricultural systems models.
Tian Z; Niu Y; Fan D; Sun L; Fischer G; Zhong H; Deng J; Tubiello FN
发表日期2018
出处Agricultural Systems 159: 175-186
出版年2018
语种英语
摘要China is the largest rice producing and consuming country in the world, accounting for more than 25% of global production and consumption. Rice cultivation is also one of the main sources of anthropogenic methane (CH4) and nitrous oxide (N2O) emissions. The challenge of maintaining food security while reducing greenhouse gas emissions is an important tradeoff issue for both scientists and policy makers. A systematical evaluation of tradeoffs requires attention across spatial scales and over time in order to characterize the complex interactions across agricultural systems components. We couple three well-known models that capture different key agricultural processes in order to improve the tradeoff analysis. These models are the DNDC biogeochemical model of soil denitrification-decomposition processes, the DSSAT crop growth and development model for decision support and agro-technology analysis, and the regional AEZ crop productivity assessment tool based on agro-ecological analysis. The calibration of eco-physiological parameters and model evaluation used the phenology and management records of 1981–2010 at nine agro-meteorological stations spanning the major rice producing regions of China. The eco-physiological parameters were calibrated with the GLUE optimization algorithms of DSSAT and then converted to the counterparts in DNDC. The upscaling of DNDC was carried out within each cropping zone as classified by AEZ. The emissions of CH4 and N2O associated with rice production under different management scenarios were simulated with the DNDC at each site and also each 10 × 10 km grid-cell across each cropping zone. Our results indicate that it is feasible to maintain rice yields while reducing CH4 and N2O emissions through careful management changes. Our simulations indicated that a reduction of fertilizer applications by 5–35% and the introduction of midseason drainage across the nine study sites resulted in reduced CH4 emission by 17–40% and N2O emission by 12–60%, without negative consequences on rice yield.
主题Water (WAT)
关键词Climate change Agricultural CH4 and N2O emissions Rice yield Model coupling Mitigation tradeoffs China
URLhttp://pure.iiasa.ac.at/id/eprint/14546/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/131421
推荐引用方式
GB/T 7714
Tian Z,Niu Y,Fan D,et al. Maintaining rice production while mitigating methane and nitrous oxide emissions from paddy fields in China: Evaluating tradeoffs by using coupled agricultural systems models.. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tian Z]的文章
[Niu Y]的文章
[Fan D]的文章
百度学术
百度学术中相似的文章
[Tian Z]的文章
[Niu Y]的文章
[Fan D]的文章
必应学术
必应学术中相似的文章
[Tian Z]的文章
[Niu Y]的文章
[Fan D]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。