G2TT
来源类型Article
规范类型其他
DOI10.1016/j.envsoft.2019.01.003
Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models.
Zaherpour J; Mount N; Gosling S; Dankers R; Eisner S; Gerten D; Liu X; Masaki Y
发表日期2019
出处Environmental Modelling & Software 114: 112-128
出版年2019
语种英语
摘要This study presents a novel application of machine learning to deliver optimised, multi-model combinations (MMCs) of Global Hydrological Model (GHM) simulations. We exemplify the approach using runoff simulations from five GHMs across 40 large global catchments. The benchmarked, median performance gain of the MMC solutions is 45% compared to the best performing GHM and exceeds 100% when compared to the EM. The performance gain offered by MMC suggests that future multi-model applications consider reporting MMCs, alongside the EM and intermodal range, to provide end-users of GHM ensembles with a better contextualised estimate of runoff. Importantly, the study highlights the difficulty of interpreting complex, non-linear MMC solutions in physical terms. This indicates that a pragmatic approach to future MMC studies based on machine learning methods is required, in which the allowable solution complexity is carefully constrained.
主题Water (WAT)
关键词Machine learning Model weighting Gene expression programming Global hydrological models Optimisation
URLhttp://pure.iiasa.ac.at/id/eprint/15698/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/131688
推荐引用方式
GB/T 7714
Zaherpour J,Mount N,Gosling S,et al. Exploring the value of machine learning for weighted multi-model combination of an ensemble of global hydrological models.. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zaherpour J]的文章
[Mount N]的文章
[Gosling S]的文章
百度学术
百度学术中相似的文章
[Zaherpour J]的文章
[Mount N]的文章
[Gosling S]的文章
必应学术
必应学术中相似的文章
[Zaherpour J]的文章
[Mount N]的文章
[Gosling S]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。