G2TT
来源类型Conference or Workshop Item (UNSPECIFIED)
规范类型其他
On sparse possibilistic clustering with crispness - Classification function and sequential extraction.
Hamasuna Y; Endo Y
发表日期2012
出处Proceedings, 2012 Joint 6th International Conference on Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligence Systems (ISIS), 20-24 November 2012
出版年2012
语种英语
摘要In addition to fuzzy c-means clustering, possibilistic clustering is well-known as one of the useful techniques because it is robust against noise in data. Especially sparse possibilistic clustering is quite different from other possibilistic clustering methods in the point of membership function. We propose a way to induce the crispness in possibilistic clustering by using L1 -regularization and show classification function of sparse possibilistic clustering with crispness for understanding allocation rule. We, moreover, show the way of sequential extraction by proposed method. After that, we show the effectiveness of the proposed method through numerical examples.
主题Advanced Systems Analysis (ASA)
关键词Classification function L1-regularization Possibilistic clustering Sequential extraction
URLhttp://pure.iiasa.ac.at/id/eprint/10178/
来源智库International Institute for Applied Systems Analysis (Austria)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/132469
推荐引用方式
GB/T 7714
Hamasuna Y,Endo Y. On sparse possibilistic clustering with crispness - Classification function and sequential extraction.. 2012.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hamasuna Y]的文章
[Endo Y]的文章
百度学术
百度学术中相似的文章
[Hamasuna Y]的文章
[Endo Y]的文章
必应学术
必应学术中相似的文章
[Hamasuna Y]的文章
[Endo Y]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。