Gateway to Think Tanks
来源类型 | Book Section |
DOI | 10.1007/978-3-662-00748-8_7 |
Permanence for replicator equations. | |
Hofbauer J; Sigmund K; Kurzhanski, A.B.; Sigmund, K. | |
发表日期 | 1987 |
出处 | Dynamical Systems. Eds. Kurzhanski, A.B. & Sigmund, K. , pp. 70-91 Germany: Springer Berlin/Heidelberg. ISBN 978-3-662-00748-8 DOI: 10.1007/978-3-662-00748-8_7 . |
出版年 | 1987 |
语种 | 英语 |
摘要 | Many dynamical systems display strange attractors and hence orbits that are so sensitive to initial conditions as to make any long-term prediction (except on a statistical basis) a hopeless task. Such a lack of Ljapunov stability is not always crucial, however: Lagrange stability may be more relevant. Thus, for some models the precise asymptotic behavior — whether it settles down to an equilibrium or keeps oscillating in a regular or irregular fashion — is less important than the fact that all orbits wind up in some preassigned bounded set. The former problem can be impossibly hard to solve and the latter one easy to handle. |
主题 | Dynamic Systems (DYN) |
URL | http://pure.iiasa.ac.at/id/eprint/12951/ |
来源智库 | International Institute for Applied Systems Analysis (Austria) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/133087 |
推荐引用方式 GB/T 7714 | Hofbauer J,Sigmund K,Kurzhanski, A.B.,et al. Permanence for replicator equations.. 1987. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。