G2TT
来源类型Book Section
DOI10.1007/3-540-54535-2_40
Adaptive learning using a qualitative feedback loop.
Winkelbauer L; Stary C
发表日期1991
出处EPIA 91. pp. 278-292 Germany: Springer Berlin/Heidelberg. ISBN 978-3-540-38459-5 DOI: 10.1007/3-540-54535-2_40 .
出版年1991
语种英语
摘要Most of the example-based learning algorithms developed so far are limited by the fact that they learn unidirectionally, i.e., they just transform the presented examples into a fixed internal representation form and do not adapt their learning strategy according to the results of this transformation process. Only a few learning algorithms incorporate such a feedback from an evaluation of the learned problem representation to the input for the next learning step. But all those rely on quantitative evaluation of the problem representation only, qualitative criteria are always neglected.
主题Advanced Computer Applications (ACA)
URLhttp://pure.iiasa.ac.at/id/eprint/13077/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/133256
推荐引用方式
GB/T 7714
Winkelbauer L,Stary C. Adaptive learning using a qualitative feedback loop.. 1991.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Winkelbauer L]的文章
[Stary C]的文章
百度学术
百度学术中相似的文章
[Winkelbauer L]的文章
[Stary C]的文章
必应学术
必应学术中相似的文章
[Winkelbauer L]的文章
[Stary C]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。