G2TT
来源类型Book Section
DOI10.1007/978-3-642-36062-6_29
Nonlinear stabilizers in optimal control problems with infinite time horizon.
Tarasyev AM; Usova AA; Hoemberg, D; Troeltzsch, F
发表日期2013
出处System Modeling and Optimization. Eds. Hoemberg, D & Troeltzsch, F , Berlin: Springer. DOI: 10.1007/978-3-642-36062-6_29 .
出版年2013
语种英语
摘要In optimal control problems with infinite time horizon, arising in models of economic growth, there are essential difficulties in analytical and even in numerical construction of solutions of Hamiltonian systems. The problem is in stiff properties of differential equations of the maximum principle and in non-stable character of equilibrium points connected with corresponding transversality conditions. However, if a steady state exists and meets several conditions of regularity then it is possible to construct a nonlinear stabilizer for the Hamiltonian system. This stabilizer inherits properties of the maximum principle, generates a nonlinear system with excluded adjoint variables and leads its trajectories to the steady state. Basing on the qualitative theory of differential equations, it is possible to prove that trajectories generated by the nonlinear stabilizer are close to solutions of the original Hamiltonian system, at least locally, in a neighborhood of the steady state. This analysis allows to create stable algorithms for construction of optimal solutions.
主题Advanced Systems Analysis (ASA)
关键词Optimal control Nonlinear control system Nonlinear stabilizer Economic systems
URLhttp://pure.iiasa.ac.at/id/eprint/10597/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/134289
推荐引用方式
GB/T 7714
Tarasyev AM,Usova AA,Hoemberg, D,et al. Nonlinear stabilizers in optimal control problems with infinite time horizon.. 2013.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tarasyev AM]的文章
[Usova AA]的文章
[Hoemberg, D]的文章
百度学术
百度学术中相似的文章
[Tarasyev AM]的文章
[Usova AA]的文章
[Hoemberg, D]的文章
必应学术
必应学术中相似的文章
[Tarasyev AM]的文章
[Usova AA]的文章
[Hoemberg, D]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。