G2TT
来源类型Book Section
DOI10.1007/978-3-319-38884-7_13
The Cropland Capture Game: good annotators versus vote aggregation methods.
Fritz S; Khachay M; Nurmukhametov O; See L
发表日期2016
出处Advanced Computational Methods for Knowledge Engineering - Proceedings of the 4th International Conference on Computer Science, Applied Mathematics and Applications, ICCSAMA 2016, 2-3 May, 2016, Vienna, Austria. pp. 167-180 Cham, Switzerland: Springer International Publishing. ISBN 978-3-319-38884-7 DOI: 10.1007/978-3-319-38884-7_13 .
出版年2016
语种英语
摘要The Cropland Capture game, which is a recently developed Geo-Wiki game, aims to map cultivated lands using around 17,000 satellite images from the Earth’s surface. Using a perceptual hash and blur detection algorithm, we improve the quality of the Cropland Capture game’s dataset. We then benchmark state-of-the-art algorithms for an aggregation of votes using results of well-known machine learning algorithms as a baseline. We demonstrate that volunteer-image assignment is highly irregular and only good annotators are presented (there are no spammers and malicious voters). We conjecture that the last fact is the main reason for surprisingly similar accuracy levels across all examined algorithms. Finally, we increase the estimated consistency with expert opinion from 77 to 91 % and up to 96 % if we restrict our attention to images with more than 9 votes.
主题Ecosystems Services and Management (ESM)
关键词Crowdsourcing Image processing Votes aggregation
URLhttp://pure.iiasa.ac.at/id/eprint/13204/
来源智库International Institute for Applied Systems Analysis (Austria)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/134488
推荐引用方式
GB/T 7714
Fritz S,Khachay M,Nurmukhametov O,et al. The Cropland Capture Game: good annotators versus vote aggregation methods.. 2016.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fritz S]的文章
[Khachay M]的文章
[Nurmukhametov O]的文章
百度学术
百度学术中相似的文章
[Fritz S]的文章
[Khachay M]的文章
[Nurmukhametov O]的文章
必应学术
必应学术中相似的文章
[Fritz S]的文章
[Khachay M]的文章
[Nurmukhametov O]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。