G2TT
来源类型Working Papers
规范类型论文
Outliers in semi-parametric Estimation of Treatment Effects
Darwin Ugarte Ontiveros; Gustavo Canavire-Bacarreza and Luis Castro Peñarrieta
发表日期2017-12-13
出版年2017
语种英语 ; Spanish
摘要

By: Darwin Ugarte Ontiveros, Gustavo Canavire-Bacarreza and Luis Castro Peñarrieta
October 2017

Abstract
Average treatment effects estimands can present significant bias under the presence of outliers. Moreover, outliers can be particularly hard to detect, creating bias and inconsistency in the semi-parametric ATE estimads. In this paper, we use Monte Carlo simulations to demonstrate that semi-parametric methods, such as matching, are biased in the presence of outliers. Bad and good leverage points outliers are considered. The bias arises because bad leverage points completely change the distribution of the metrics used to define counterfactuals. Whereas good leverage points increase the chance of breaking the common support condition and distort the balance of the covariates and which may push practitioners to misspecify the propensity score. We provide some clues to diagnose the presence of outliers and propose a reweighting estimator that is robust against outliers based on the Stahel-Donoho multivariate estimator of scale and location. An application of this estimator to LaLonde’s (1986) data allows us to explain the Dehejia and Wahba (2002) and Smith and Todd (2005) debate on the inability of matching estimators to deal with the evaluation problem.

Keywords: Treatment effects, Outliers, Propensity score, Mahalanobis distance
JEL codes: C21, C14, C52, C13

Outliers in semi-parametric Estimation of Treatment Effects

1,7 MB
主题Economía Regional
关键词Treatment effects Outliers Propensity score Mahalanobis distanceJEL codes: C21 C14 C52 C13
URLhttps://www.inesad.edu.bo/2017/12/13/outliers-in-semi-parametric-estimation-of-treatment-effects/
来源智库Instituto de Estudios Avanzados en Desarrollo (Bolivia)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/143798
推荐引用方式
GB/T 7714
Darwin Ugarte Ontiveros,Gustavo Canavire-Bacarreza and Luis Castro Peñarrieta. Outliers in semi-parametric Estimation of Treatment Effects. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
wp06_2017.pdf(1788KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Darwin Ugarte Ontiveros]的文章
[Gustavo Canavire-Bacarreza and Luis Castro Peñarrieta]的文章
百度学术
百度学术中相似的文章
[Darwin Ugarte Ontiveros]的文章
[Gustavo Canavire-Bacarreza and Luis Castro Peñarrieta]的文章
必应学术
必应学术中相似的文章
[Darwin Ugarte Ontiveros]的文章
[Gustavo Canavire-Bacarreza and Luis Castro Peñarrieta]的文章
相关权益政策
暂无数据
收藏/分享
文件名: wp06_2017.pdf
格式: Adobe PDF

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。