G2TT
来源类型Technical notes
规范类型报告
来源IDRP0165
RP0165 – Numerical Methods for Data Assimilation: Kalman Filter
Luisa D'Amore; Rossella Arcucci; Almerico Murli
发表日期2012-12
出版年2012
语种英语
摘要

The Kalman filter (KF) dates back to 1960, when R. E. Kalman [4] provided a recursive algorithm to compute the solution of a (linear) data filtering and prediction problem, proving to be much more efficient than the N. Wiener’s approach, introduced in 1949 in [5].
Data filtering is a simple example of Data Assimilation problem which can be regarded as a least squares approximation problem and, more precisely, as an inverse ill-posed problem. 
In this paper we review and discuss KF in the context of numerical regularization methods aimed to solve ill-posed inverse problems such those arising in Data Assimilation applications.

URLhttps://www.cmcc.it/publications/rp0165-numerical-methods-for-data-assimilation-kalman-filter
来源智库Centro Euro-Mediterraneo sui Cambiamenti Climatici (Italy)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/200358
推荐引用方式
GB/T 7714
Luisa D'Amore,Rossella Arcucci,Almerico Murli. RP0165 – Numerical Methods for Data Assimilation: Kalman Filter. 2012.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
rp0165-sco-12-2012.p(358KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luisa D'Amore]的文章
[Rossella Arcucci]的文章
[Almerico Murli]的文章
百度学术
百度学术中相似的文章
[Luisa D'Amore]的文章
[Rossella Arcucci]的文章
[Almerico Murli]的文章
必应学术
必应学术中相似的文章
[Luisa D'Amore]的文章
[Rossella Arcucci]的文章
[Almerico Murli]的文章
相关权益政策
暂无数据
收藏/分享
文件名: rp0165-sco-12-2012.pdf
格式: Adobe PDF

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。