G2TT
来源类型Working papers
规范类型论文
DOI10.3929/ethz-b-000338148
How effective was the UK carbon tax? A machine learning approach to policy evaluation
Abrell, Jan; Kosch, Mirjam; Rausch, Sebastian
发表日期2019-04
出版者ETH Zurich, Center of Economic Research (CER-ETH)
出版年2019
语种英语
摘要Carbon taxes are commonly seen as a rational policy response to climate change, but little is known about their performance from an ex-post perspective. This paper analyzes the emissions and cost impacts of the UK CPS, a carbon tax levied on all fossil-fired power plants. To overcome the problem of a missing control group, we propose a novel approach for policy evaluation which leverages economic theory and machine learning techniques for counterfactual prediction. Our results indicate that in the period 2013-2016 the CPS lowered emissions by 6.2 percent at an average cost of €18 per ton. We find substantial temporal heterogeneity in tax-induced impacts which stems from variation in relative fuel prices. An important implication for climate policy is that a higher carbon tax does not necessarily lead to higher emissions reductions or higher costs.
主题Carbon tax ; Carbon pricing ; Electricity ; Coal ; Natural gas ; United Kingdom ; Carbon Price Surcharge ; Policy evaluation ; Causal inference ; Machine learning ; Climate policy
URLhttps://www.research-collection.ethz.ch/handle/20.500.11850/338148
来源智库Centre for Energy Policy and Economics (Switzerland)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/266807
推荐引用方式
GB/T 7714
Abrell, Jan,Kosch, Mirjam,Rausch, Sebastian. How effective was the UK carbon tax? A machine learning approach to policy evaluation. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
WP-19-317.pdf(4075KB)智库出版物 限制开放CC BY-NC-SA浏览
WP-19-317.jpg(3KB)智库出版物 限制开放CC BY-NC-SA缩略图
浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Abrell, Jan]的文章
[Kosch, Mirjam]的文章
[Rausch, Sebastian]的文章
百度学术
百度学术中相似的文章
[Abrell, Jan]的文章
[Kosch, Mirjam]的文章
[Rausch, Sebastian]的文章
必应学术
必应学术中相似的文章
[Abrell, Jan]的文章
[Kosch, Mirjam]的文章
[Rausch, Sebastian]的文章
相关权益政策
暂无数据
收藏/分享
文件名: WP-19-317.pdf
格式: Adobe PDF
文件名: WP-19-317.jpg
格式: JPEG

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。