G2TT
来源类型Peer-reviewed Article
规范类型其他
A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees
Brian JOHNSON
发表日期2013-06
出版者Taylor & Francis Group
出版年2013
页码6969-6982
语种英语
概述We developed a multiscale object-based classification method for detecting diseased
摘要

We developed a multiscale object-based classification method for detecting diseased
trees (Japanese Oak Wilt and Japanese Pine Wilt) in high-resolution multispectral
satellite imagery. The proposed method involved (1) a hybrid intensity–hue–
saturation smoothing filter-based intensity modulation (IHS-SFIM) pansharpening
approach to obtain more spatially and spectrally accurate image segments; (2) synthetically
oversampling the training data of the ‘Diseased tree’ class using the Synthetic
Minority Over-sampling Technique (SMOTE); and (3) using a multiscale object-based
image classification approach. Using the proposed method, we were able to map diseased
trees in the study area with a user’s accuracy of 96.6% and a producer’s accuracy
of 92.5%. For comparison, the diseased trees were mapped at a user’s accuracy of 84.0%
and a producer’s accuracy of 70.1% when IHS pansharpening was used alone and a single-
scale classification approach was implemented without oversampling the ‘Diseased
tree’ class.

区域Japan
URLhttps://pub.iges.or.jp/pub/hybrid-pansharpening-approach-and-multiscale
来源智库Institute for Global Environmental Strategies (Japan)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/309417
推荐引用方式
GB/T 7714
Brian JOHNSON. A hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees. 2013.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
Johnson_-_IJRS_2013.(298KB)智库出版物 限制开放CC BY-NC-SA浏览
2fd80d73ce07650dbadc(3KB)智库出版物 限制开放CC BY-NC-SA缩略图
浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Brian JOHNSON]的文章
百度学术
百度学术中相似的文章
[Brian JOHNSON]的文章
必应学术
必应学术中相似的文章
[Brian JOHNSON]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Johnson_-_IJRS_2013.pdf
格式: Adobe PDF
此文件暂不支持浏览
文件名: 2fd80d73ce07650dbadccc81b69771e29ed8beef.jpg
格式: JPEG

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。