G2TT
来源类型Peer-reviewed Article
规范类型其他
Using convolutional neural networks to identify objects from very high-resolution remote sensing imagery
Brian JOHNSON
发表日期2018-05
出版者SPIE
出版年2018
页码025010
语种英语
概述A new method for classifying land cover features in high resolution satellite imagery was developed. The method involves (1) performing image segmentation to delineate homogeneous...
摘要

A new method for classifying land cover features in high resolution satellite imagery was developed. The method involves (1) performing image segmentation to delineate homogeneous ground objects in the image, and (2) using a convolutional neural network classifier to extract the land cover of the segments (i.e. whether they represent buildings, cropland, forest, etc.).

主题Resilient Livelihoods$Sustainable Cities & Societies
URLhttps://pub.iges.or.jp/pub/using-convolutional-neural-networks-identify
来源智库Institute for Global Environmental Strategies (Japan)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/311766
推荐引用方式
GB/T 7714
Brian JOHNSON. Using convolutional neural networks to identify objects from very high-resolution remote sensing imagery. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
a1f79fe0a1fc0e36f91f(4KB)智库出版物 限制开放CC BY-NC-SA缩略图
浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Brian JOHNSON]的文章
百度学术
百度学术中相似的文章
[Brian JOHNSON]的文章
必应学术
必应学术中相似的文章
[Brian JOHNSON]的文章
相关权益政策
暂无数据
收藏/分享
文件名: a1f79fe0a1fc0e36f91f3887f1e522ef4877f6d4.jpg
格式: JPEG

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。