Gateway to Think Tanks
来源类型 | Peer-reviewed Article |
规范类型 | 其他 |
Using convolutional neural networks to identify objects from very high-resolution remote sensing imagery | |
Brian JOHNSON | |
发表日期 | 2018-05 |
出版者 | SPIE |
出版年 | 2018 |
页码 | 025010 |
语种 | 英语 |
概述 | A new method for classifying land cover features in high resolution satellite imagery was developed. The method involves (1) performing image segmentation to delineate homogeneous... |
摘要 | A new method for classifying land cover features in high resolution satellite imagery was developed. The method involves (1) performing image segmentation to delineate homogeneous ground objects in the image, and (2) using a convolutional neural network classifier to extract the land cover of the segments (i.e. whether they represent buildings, cropland, forest, etc.). |
主题 | Resilient Livelihoods$Sustainable Cities & Societies |
URL | https://pub.iges.or.jp/pub/using-convolutional-neural-networks-identify |
来源智库 | Institute for Global Environmental Strategies (Japan) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/311766 |
推荐引用方式 GB/T 7714 | Brian JOHNSON. Using convolutional neural networks to identify objects from very high-resolution remote sensing imagery. 2018. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
a1f79fe0a1fc0e36f91f(4KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | ![]() 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Brian JOHNSON]的文章 |
百度学术 |
百度学术中相似的文章 |
[Brian JOHNSON]的文章 |
必应学术 |
必应学术中相似的文章 |
[Brian JOHNSON]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。