G2TT
来源类型REPORT
规范类型报告
Understanding Our Future
Luke Bassett; Kristina Costa; Ryan Richards; Dinu Krishnamoorthi
发表日期2018-09-12
出版年2018
语种英语
概述Having led global scientific research on climate and energy systems for decades, the United States can and should build on its expansive data collection and analysis programs to advance understanding of the changing Earth.
摘要

Introduction and summary

In the three months since the Center for American Progress published its initial assessment of budget cuts and political interference in U.S. federal climate and energy data and research programs, the effects of climate change have continued to wreak havoc on communities in the United States and around the world.1 The Mendocino Complex Fire became California’s largest wildfire in recorded history.2 Smoke from that wildfire and others burning across the West have choked cities, and now the top five U.S. cities with the worst air quality are all in Washington and Oregon.3 In 2018, the United States and Europe both experienced their hottest May through July periods in history; some areas, such as the Mid-Atlantic, have experienced record precipitation while others, such as New Mexico, have seen record dryness.4 Washington, D.C., has received the eighth-highest amount of precipitation on record for the January through July period.5 The first tropical cyclone since 1992 to strike Hawaii, Hurricane Lane, delivered a historic 52.02 inches of rainfall, a level surpassed only by one other cyclone in U.S. history.6 But these alarming events have passed with essentially no notice from the White House or leaders in Congress; indeed, as the Mendocino Complex Fire burned, the Trump administration announced proposals to dramatically roll back both fuel economy standards for passenger vehicles and the first-ever limits on carbon pollution from the power sector.7

The United States has long led the global community’s investment in and performance of the core scientific research needed to understand Earth’s interconnected systems. From the atmosphere to the oceans, from energy systems to food and water flows, and from distant satellites to microbial studies, U.S. scientists have laid the groundwork and led collaborative efforts to better understand these systems from the smallest to the largest scales. This knowledge of the historic, current, and potential conditions on Earth has shaped policymaking, business decisions, public health outcomes, national defense, and even the ability to put bread on kitchen tables across the country.

The Trump administration has twice proposed unprecedented, draconian cuts to federal investments in climate science and data collection programs. The administration’s budget requests would have yielded a $2.4 billion cut, or 16.8 percent, between FY 2017 and FY 2018, and a $1.89 billion cut, or 13.2 percent, between FY 2017 and FY 2019, according to a CAP analysis released earlier this year.8 Congress has so far roundly rejected these proposals, restoring critical budgets the Trump administration proposed zeroing out and even increasing funding over Obama-era levels at times. In some cases, Congress has also provided guidance to the Trump administration to prohibit political appointees from scuttling long-planned Earth sciences missions. For instance, alongside a $150 million proposed cut to NASA’s Earth Sciences programs, which observe and research the Earth and its natural systems, the Trump administration’s FY 2018 budget request would have completely eliminated four major planned or ongoing satellite missions: the Plankton, Aerosols, Cloud, Ocean Ecosystem (PACE); the Orbiting Carbon Observatory-3 (OCO-3); the Deep Space Climate Observatory (DSCOVR); and the Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder. Congress ordered all four programs continued and appropriated funds to do so in its March 2018 omnibus spending package.9

However, the broad, bipartisan Congressional rejection of these proposed budget cuts does not mean that the federal climate science apparatus is safe from political interference. Federal agencies retain broad latitude to not obligate funds appropriated by Congress for research programs, reports, and other activities, so long as Congress did not provide explicit instruction to conduct the work. For instance, the Trump administration’s FY 2018 budget request also proposed eliminating NASA’s Carbon Monitoring System, a research program that enabled the remote monitoring of carbon emissions in the atmosphere and helped buttress international verification of whether countries are fulfilling their pledges to reduce tropical deforestation, among other initiatives. Congress failed to explicitly direct NASA to continue the program, leaving the Trump administration free to cancel it—which it did.10 This ongoing budgetary uncertainty makes planning and conducting years-long scientific research initiatives increasingly difficult, whether inside federal agencies or at research institutions supported by federal grants.

At the same time, efforts to understand Earth’s systems have never been riper with opportunities for scientific discovery. There is no doubt about the science of climate change: Carbon dioxide released by burning fossil fuels is driving CO2 concentrations in the atmosphere to levels not seen in all of human history, thereby increasing global average temperatures, causing the accelerated melting of glaciers and ice sheets, and increasing the severity of weather events—from droughts to wildfires to extreme downpours and floods. But beyond the basics, the severity and urgency of climate change presents an incredible set of challenges and important research questions for scientists and policymakers to address.

The United States needs to abandon President Trump’s dismissal of Earth sciences and climate change and redouble its efforts to fund, perform, collect, and analyze the scientific data and research that remain integral to living on this planet and acting in its and our own best interests. To do this, the Center for American Progress proposes doubling federal investment in climate and energy data and scientific research over the next five years, over a FY 2016 baseline of $15.6 billion across the programs and activities of the 13 federal agencies that make up the U.S. Global Change Research Program.11

Going forward, several framing questions arise for the scientific and policy community regarding climate and energy data and research, including:

  • What can we expect climate change to mean for Earth’s natural systems on land, in the oceans, and in the Arctic?
  • What will climate change mean for humanity and society—for our health, our economies, our cities, and the weather we experience day to day?
  • What is required to pursue these and other important research questions, in terms of crosscutting programmatic, infrastructural, and organizational investments?

This report seeks to provide some initial answers to these questions. It identifies areas where opportunities and needs exist for continuing and expanding the U.S. federal government’s investment in data collection, new capabilities for monitoring and analysis, and further research. By no means comprehensive, this report is intended to serve as a starting point for much-needed discussion to prevent data gaps in current programs and to look forward to the reestablishment and expansion of our efforts to understand our changing planet.

What does the Earth’s future look like?

Climate change has already profoundly reshaped ecosystems on land, in the oceans, and in the planet’s polar regions, from earlier springs to longer wildfire seasons to rising temperatures on both land and sea. Even if carbon and methane pollution from human activity were to cease completely tomorrow, additional changes to the planet are already baked into the system as a result of past emissions.

Polar regions

The Arctic is the canary in the coal mine of climate change. The Earth’s remote polar regions are warming twice as fast as the rest of the world.12 Sea ice covers 32 percent less of the Arctic at its lowest point in the annual sea ice cycle today compared to 1979, the first year in which complete satellite data were available.13 A warming Arctic has real consequences for people far from the Arctic Circle: Not only do melting glaciers in Greenland and elsewhere increase sea levels, Arctic warming and the weakening of the polar vortex has sent unprecedented cold snaps and tumultuous weather into Europe and North America.14

Despite the importance of the Arctic to global climate change, the region’s remoteness and historic challenges in collecting data mean there are significant gaps in our research programs that ultimately inhibit broader understanding of and planning for climate change.

For instance, the global Argo project has some 3,800 floats—small data collection devices that measure sea temperature and salinity—drifting freely in the global ocean.15 In just 18 years since the first float was launched, Argo has transformed scientists’ understanding of how climate change is affecting the global ocean. However, at any given time, the majority of the floats are clustered in the mid-latitudes, between 40 degrees North and 40 degrees South, with relatively few monitoring the far northern latitudes and the Arctic.16 The first drifting buoy ever deployed north of the Bering Sea was released less than a decade ago, in 2009.17 While the remoteness of the Arctic and the variability of sea ice extent creates logistical challenges for deploying additional floats, the current generation of Argo floats is equipped with two-way communication and ice-sensing algorithms.18

An ambitious next-generation Arctic Ocean-monitoring program could take advantage of new developments in artificial intelligence and drone technologies to build a fleet of remote-controlled, semiautonomous floats that could be deployed to conduct strategic sampling of the Arctic Ocean and build a more comprehensive data set for use in climate science modeling, weather research, and even commercial applications, such as predicting the availability of shipping lanes. In fact, the Danish shipping giant Maersk is planning to send its first container ship through the Arctic this month to test the viability of the route and to collect scientific data.19

Significantly more research is also needed to understand trends affecting permafrost, the thick layer of soil, rock, organic matter, and water that has remained frozen year-round for thousands of years, deep underneath some 25 percent of the Northern Hemisphere.20 An estimated 1,400 gigatons of carbon is essentially locked up in the permafrost, in the form of frozen plant and animal matter.21 The permafrost is covered by an “active layer” that freezes and thaws in the same kind of annual pattern experienced at lower latitudes and allows vegetation to grow in the tundra.

But now the permafrost is beginning to thaw—and that has huge implications not just for the Arctic, but for the global climate. Already, permafrost temperatures have risen by up to 2 degrees Celsius, according to the Arctic Council, and the southernmost extent of the permafrost is moving north, by as much as 80 kilometers over the past four decades.22 Roads and runways in Alaska are buckling, and building foundations are shifting as a result of the permafrost thawing.23 Thawing permafrost coupled with disappearing sea ice can also increase rates of coastal erosion in the Arctic, imperiling centuries-old native settlements.24 Thawing permafrost is suspected to have released long-dormant anthrax microbes that killed at least one boy, sickened more than 70 people, and killed more than 2,000 reindeer in Russia in 2016.25

The 1,400 gigatons of plant and animal carbon currently locked in the permafrost is more than the amount of carbon currently in the atmosphere.26 As the permafrost warms, microbes are able to access previously frozen plant and animal matter and cause decomposition, thereby releasing carbon dioxide or methane into the atmosphere, causing more warming and thawing more permafrost in a feedback loop. Some recent studies and findings indicate that the permafrost may be thawing faster than expected. A recent NASA-funded study found that a little-known process called “abrupt thawing” may be accelerating the timeline for the greenhouse gas-permafrost feedback loop to begin.27

While scientists don’t expect all 1,400 gigatons to be released, the question of how much decomposition will occur, how quickly, and whether the processes will release predominantly carbon dioxide or methane—the latter has a greater short-term effect on global warming than carbon dioxide—are all vital research questions.28 A next-generation permafrost research program would need more support for field research and increased efforts to connect field research with satellite remote sensing and climate modeling.29

Land

Beyond Earth’s polar regions, trends in terrestrial ecosystems and agriculture are both critically important to the trajectory of the future climate and the well-being of billions of people. The changes are already evident in the United States, where the magnitude of wildfires is estimated to be growing in large part due to changes in the climate.30 A consistent trend toward more arid conditions in the Southwest, along with more than 100 million dead trees in California’s Sierra Nevada following a multiyear drought, are clear signs of the challenges that are rapidly approaching.31 Governments, NGOs, and businesses have led a growing call for greater understanding of the possible effects on agriculture, biodiversity, and water, both in the United States and around the world.

Understanding how terrestrial systems function and how they will be affected by climate change is critically important to predicting climate scenarios and preparing society for the future. At present, federal efforts to understand these systems are diffuse, with significant gaps that could be addressed through an increase in funding toward specific priorities. Chief among these priorities is the collection of data on ecosystems and their interactions with regional and global components of the climate. Recent advances in computing—for example, processing capacity and machine learning—have extended our capacity to model complex systems, but good, fine-scale data are needed to ensure that these models are as precise and accurate as possible.

Increased monitoring efforts should be used to understand ecosystems at different scales. This is important both to minimize risks to communities and natural resources and to better inform the management of ecological systems in order to reduce future carbon emissions. Specifically, there is a need for more observation locations and more frequent measurement of how forests interact with the carbon cycle under different scenarios. Forests in the United States are estimated to be able to store 14 percent to 19 percent of U.S. carbon needs, which is a wide band of uncertainty given carbon reduction commitments. In addition to varying by forest type and tree species, carbon uptake varies with precipitation and the age of a forest community—and many of these variables change every year. The U.S. Forest Service has a backlog of more than 800,000 acres of land where forests should be replanted, and states have also made their own commitments.32 Better data will help these entities prioritize investments—as well as other forest management decisions—as part of their commitments to emissions reductions.

Similar investments in agricultural systems are important to both preparing food systems for change and investing in land uses that contribute to emissions reductions. Specifically, long-term data collection on soil carbon—and plant-soil carbon interactions—is important for mitigation and adaptation. While the Natural Resources Conservation Service within the U.S. Department of Agriculture conducts periodic assessments of specific resources,33 data collection efforts should be increased to help refine models of environmental risks34 and to inform outreach efforts to farmers as well as emerging policy tools such as environmental markets for carbon and other ecosystem services on agricultural lands.35

Ecological research should extend beyond soil and carbon as well. Monitoring of ecosystems through the National Science Foundation’s Long-Term Ecological Research Network has had a significant influence on our understanding of ecosystem functions and development of environmental policy, but the coverage that these projects provide should be extended to refine our understanding of how the effects of climate change vary across ecosystems and regions.36

Other natural systems merit greater monitoring effort as well. The U.S. Geological Survey (USGS) conducts a water census every five years to track usage across different economic sectors throughout the country, and cooperates with other agencies to monitor river flows and precipitation patterns.37 However, the current approach to data collection on water usage provides limited snapshots, and given the rapid changes in precipitation that may occur—such as the drought in California and the longer-term aridification patterns in the Southwest—there is a clear case for aggregating data more frequently to help the multitude of agencies and businesses responsible for managing water prepare for future scenarios.

Oceans

The oceans are the lungs of the planet, with marine plankton responsible for generating as much as 70 percent of the oxygen in the atmosphere.38 Oceans are also the planet’s biggest carbon sink, absorbing a quarter of carbon pollution generated by human activity and 90 percent of the excess heat caused by climate change.39 However, all of that additional carbon dioxide and heat energy has serious consequences for the health of marine ecosystems and the food chains and coastal economies that depend on them. Higher ocean temperatures increase thermal stress on the coral reefs that provide habitat to thousands of fish species worldwide, leading to bleaching events and mass coral die-offs.40 In just the past two years, half of the corals in Australia’s Great Barrier Reef have been “bleached to death.”41 In addition, when the carbon dioxide emitted from burning fossil fuels is absorbed into the ocean, it reacts with seawater and turns into carbonic acid, which in turn lowers the pH levels of the ocean.42 This phenomenon, called ocean acidification, makes it harder for corals and shellfish to form the calcium carbonate shells they need to grow and thrive—further endangering the marine food web.

In general, however, scientists know less about the ocean than they do about land-based ecosystems. “More than 80 percent of our ocean is unmapped, unobserved, and unexplored,” according to the National Oceanic and Atmospheric Administration (NOAA).43 Even as this report was being prepared, scientists on a mission funded by NOAA, the Bureau of Ocean Energy Management, and the USGS found a previously undiscovered deep-sea coral formation, full of robust, healthy corals, stretching for at least 85 nautical miles off the South Carolina coast.44 There are enormous opportunities for research to uncover, for instance, what makes some species of corals more resilient to climate change-related stressors and whether those genetic advantages can be passed on to future generations of corals to help replant and regrow reefs that have been damaged by rising ocean temperatures.45

A number of countries, including the United States, have in recent decades designated vast marine protected areas in their territorial waters—marine national monuments and parks where no fishing or other commercial activity is permitted. There is some evidence that fully protected marine areas may be better able to withstand the climate change-related stresses facing the entire ocean—for instance, the coral reefs contained in the Philippines’ Tubbataha Reefs National Park appear “comparatively resilient,” according to the Global Ocean Refuge System.46 The George W. Bush and Obama administrations collectively designated more than 1.9 million square miles of ocean as marine national monuments; other nations that have designated robust marine protected areas include the United Kingdom, Chile, Ecuador, and Mexico.47 A next-generation ocean science program should increase monitoring and research in these areas to better understand how robust marine protected areas can serve as a cost-effective climate adaptation strategy for the global oceans.

In addition to causing oceans to grow warmer and more acidic, climate change is also causing sea levels to rise around the world due to a combination of thermal expansion—warmer water takes up more space than colder water—and the melting of land-based glaciers and ice sheets.48 More research needs to be done both on the expected rate and extent of future sea level rise as well as how to make coastlines more resilient to sea level rise and storm surge.

The question of how rapidly the Antarctic ice sheets are going to melt is critical for predicting and adapting for future sea level rise. Most projections of future sea level rise, which predict at least a foot of sea level rise by midcentury, only accounted for thermal expansion and the melting of land-based glaciers and haven’t considered the potential breakup of massive ice sheets in Greenland and Antarctica. A study published last year incorporating new Antarctic ice-sheet modeling for the first time concluded that sea levels would rise roughly twice as much between now and 2100 as previously believed, absent immediate action to sharply reduce greenhouse gas emissions.49 While the National Science Foundation and NASA are both already supporting research into Antarctic ice-sheet dynamics, a next-generation ocean research program could include additional monitoring and observation resources for the Antarctic, including additional research trips.50

Forty percent of Americans live in coastal counties, and most of the world’s biggest cities are located in coastal areas.51 Coastal counties in the United States account for $7.9 trillion in gross domestic product and more than 50 million jobs, according to NOAA.52 The difference between one foot, two feet, and four feet of sea level rise for the millions of Americans—and billions of people globally—living at or near sea level could determine the fate of coastal economies and countless livelihoods.53

However, all coastlines aren’t created equal—some are rocky and elevated, as in much of the Northern California coast, whereas others are made up of fragile barrier islands, such as in the Carolinas, and still others are home to mangrove swamps and marshy wetlands that can absorb some seawater and deflect damaging storm surges. In a future administration, the federal government could consider a next-generation research program on climate risk to coastal communities that brings together climate scientists, experts in coastal geomorphology, municipal finance experts, and city planners to better understand the relationship between sea level rise, realistic coastal adaptation projects, and the viability of sustaining local economies.

What will humans and society face in the future?

In the past several years, events such as the wildfires in the western United States, hurricanes, and severe drought and heat waves have illustrated the increasing need for tools and information that enable decision-makers and citizens to act quickly, plan ahead for multiple scenarios, and remain flexible in the face of ongoing changes in our environment. Although they stand out, these climate-related disaster events capture only one set of the factors where Earth systems shape or interact with human and societal systems. Climate and energy data and research need to be mainstreamed into policymaking around economic and labor force trends, public health risks, transportation and energy policies, and much more.

Weather and precipitation

Most popular discussion of climate change centers on weather and precipitation. Time and again, the European Centre for Medium-Range Weather Forecasting has outperformed the U.S. weather model, called the Global Forecast System, most notably during hurricane seasons.54 The Trump administration has announced that improving U.S. weather forecasting capabilities is a top priority, but it has simultaneously defunded climate research, repudiating the necessity to invest in both.55 Improving the performance of weather modeling—and by extension that of climate modeling—depends on different spatial and temporal scales, feedback loops, and interdependence with inputs from other Earth systems. Weather forecasting occurs in four dimensions: across the latitude and longitude of Earth’s surface, vertically through t

主题Energy and Environment
URLhttps://www.americanprogress.org/issues/green/reports/2018/09/12/457762/understanding-our-future/
来源智库Center for American Progress (United States)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/436856
推荐引用方式
GB/T 7714
Luke Bassett,Kristina Costa,Ryan Richards,et al. Understanding Our Future. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Luke Bassett]的文章
[Kristina Costa]的文章
[Ryan Richards]的文章
百度学术
百度学术中相似的文章
[Luke Bassett]的文章
[Kristina Costa]的文章
[Ryan Richards]的文章
必应学术
必应学术中相似的文章
[Luke Bassett]的文章
[Kristina Costa]的文章
[Ryan Richards]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。