G2TT
来源类型Publication
Measuring Disclosure Risk and an Examination of the Possibilities of Using Synthetic Data in the Individual Income Tax Return Public Use File
Sonya Vartivarian; John L. Czajka,; Michael Weber
发表日期2007-07-31
出版者Salt Lake City, UT: Joint Statistical Meetings
出版年2007
语种英语
概述The Statistics of Income Division (SOI) currently measures disclosure risk through a distance-based technique that compares the public use file (PUF) against the population of all tax returns and uses top-coding, subsampling and multivariate microaggregation as disclosure avoidance techniques.",
摘要
The Statistics of Income Division (SOI) currently measures disclosure risk through a distance-based technique that compares the public use file (PUF) against the population of all tax returns and uses top-coding, subsampling and multivariate microaggregation as disclosure avoidance techniques. SOI is interested in exploring the use of other techniques that prevent disclosure while providing less data distortion. Synthetic or simulated data may be such a technique. But while synthetic data may be the ultimate in disclosure protection, creating a synthetic dataset that preserves the key characteristics of the source data presents a significant challenge. Additional constraints in creating synthetic data for the SOI PUF are found in maintaining the accounting relationships among numerous income, deduction, and tax items that appear on a tax return, and the nonlinear relationships involved in the tax rate structure.
URLhttps://www.mathematica.org/our-publications-and-findings/publications/measuring-disclosure-risk-and-an-examination-of-the-possibilities-of-using-synthetic-data-in-the-individual-income-tax-return-public-use-file
来源智库Mathematica Policy Research (United States)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/485782
推荐引用方式
GB/T 7714
Sonya Vartivarian,John L. Czajka,,Michael Weber. Measuring Disclosure Risk and an Examination of the Possibilities of Using Synthetic Data in the Individual Income Tax Return Public Use File. 2007.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
measuringdisclosurer(50KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sonya Vartivarian]的文章
[John L. Czajka,]的文章
[Michael Weber]的文章
百度学术
百度学术中相似的文章
[Sonya Vartivarian]的文章
[John L. Czajka,]的文章
[Michael Weber]的文章
必应学术
必应学术中相似的文章
[Sonya Vartivarian]的文章
[John L. Czajka,]的文章
[Michael Weber]的文章
相关权益政策
暂无数据
收藏/分享
文件名: measuringdisclosurerisk.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。