G2TT
来源类型Project
规范类型研究项目
Modelled Weighting and Data Fusion on Gender Mobile Pilot
Sarah Hughes; Jonathan Gellar
开始日期2019
结束日期2020
资助机构FinMark Trust
语种英语
概述Mathematica worked with FinMark Trust’s (FMT) research facility Insight2Impact (i2i) to develop a procedure to eliminate bias in short message service (SMS) survey data using a statistical technique called multilevel regression with post stratification (MRP).",
摘要Our procedure successfully corrected for problems of the representativeness of the SMS survey, especially when using a small amount of representative data to calibrate the estimates. FMT wants to further explore whether similar adjustments will allow us to make inferences about gender-specific outcomes—such as the social, economic, and health status of women and girls who are underrepresented in SMS surveys. In this project, Mathematica is working with FMT to apply our predictive model to women-specific outcomes in four countries in Africa and Asia: Kenya, Tanzania, Uganda and Pakistan. The project's primary funders are the Bill and Melinda Gates Foundation and the MasterCard Foundation.
URLhttps://www.mathematica.org/our-publications-and-findings/projects/modelled-weighting-and-data-fusion-on-gender-mobile-pilot
来源智库Mathematica Policy Research (United States)
资源类型智库项目
条目标识符http://119.78.100.153/handle/2XGU8XDN/491201
推荐引用方式
GB/T 7714
Sarah Hughes,Jonathan Gellar. Modelled Weighting and Data Fusion on Gender Mobile Pilot. 2019.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sarah Hughes]的文章
[Jonathan Gellar]的文章
百度学术
百度学术中相似的文章
[Sarah Hughes]的文章
[Jonathan Gellar]的文章
必应学术
必应学术中相似的文章
[Sarah Hughes]的文章
[Jonathan Gellar]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。