G2TT
来源类型Publication
Using Heteroskedastic Ordered Probit Models to Recover Moments of Continuous Test Score Distributions from Coarsened Data
Sean F. Reardon; Benjamin R. Shear; Katherine E. Castellano; Andrew D. Ho
发表日期2017
出版者Journal of Educational and Behavioral Statistics
出版年2017
语种英语
摘要

Test score distributions of schools or demographic groups are often summarized by frequencies of students scoring in a small number of ordered proficiency categories. We show that heteroskedastic ordered probit (HETOP) models can be used to estimate means and standard deviations of multiple groups’ test score distributions from such data. Because the scale of HETOP estimates is indeterminate up to a linear transformation, we develop formulas for converting the HETOP parameter estimates and their standard errors to a scale in which the population distribution of scores is standardized. We demonstrate and evaluate this novel application of the HETOP model with a simulation study and using real test score data from two sources. We find that the HETOP model produces unbiased estimates of group means and standard deviations, except when group sample sizes are small. In such cases, we demonstrate that a “partially heteroskesdastic” ordered probit (PHOP) model can produce estimates with a smaller root mean squared error than the fully heteroskedastic model.

主题Other
子主题Methodology and Measurement
URLhttps://cepa.stanford.edu/content/using-heteroskedastic-ordered-probit-models-recover-moments-continuous-test-score-distributions-coarsened-data
来源智库Center for Education Policy Analysis (United States)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/491793
推荐引用方式
GB/T 7714
Sean F. Reardon,Benjamin R. Shear,Katherine E. Castellano,et al. Using Heteroskedastic Ordered Probit Models to Recover Moments of Continuous Test Score Distributions from Coarsened Data. 2017.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
wp16-02-v201606.pdf(937KB)智库出版物 限制开放CC BY-NC-SA浏览
wp16-02-v201601.pdf(901KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sean F. Reardon]的文章
[Benjamin R. Shear]的文章
[Katherine E. Castellano]的文章
百度学术
百度学术中相似的文章
[Sean F. Reardon]的文章
[Benjamin R. Shear]的文章
[Katherine E. Castellano]的文章
必应学术
必应学术中相似的文章
[Sean F. Reardon]的文章
[Benjamin R. Shear]的文章
[Katherine E. Castellano]的文章
相关权益政策
暂无数据
收藏/分享
文件名: wp16-02-v201606.pdf
格式: Adobe PDF
此文件暂不支持浏览
文件名: wp16-02-v201601.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。