G2TT
来源类型Publication
Using Pooled Heteroskedastic Ordered Probit Models to Improve Small-Sample Estimates of Latent Test Score Distributions
Benjamin R. Shear; sean f. reardon
发表日期2020
出版年2020
语种英语
摘要

This paper describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in each of a small number of ordered “proficiency” levels. HETOP models can be used to estimate means and standard deviations of the underlying (latent) test score distributions, but may yield biased or very imprecise estimates when group sample sizes are small. A simulation study demonstrates that the pooled HETOP models described here can reduce the bias and sampling error of standard deviation estimates when group sample sizes are small. Analyses of real test score data demonstrate use of the models and suggest the pooled models are likely to improve estimates in applied contexts.

主题Poverty and Inequality
子主题Methodology and Measurement ; Other ; Societal Context
URLhttps://cepa.stanford.edu/content/using-pooled-heteroskedastic-ordered-probit-models-improve-small-sample-estimates-latent-test-score-distributions
来源智库Center for Education Policy Analysis (United States)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/491892
推荐引用方式
GB/T 7714
Benjamin R. Shear,sean f. reardon. Using Pooled Heteroskedastic Ordered Probit Models to Improve Small-Sample Estimates of Latent Test Score Distributions. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
wp19-05-v042020.pdf(926KB)智库出版物 限制开放CC BY-NC-SA浏览
wp19-05-v092019.pdf(1177KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Benjamin R. Shear]的文章
[sean f. reardon]的文章
百度学术
百度学术中相似的文章
[Benjamin R. Shear]的文章
[sean f. reardon]的文章
必应学术
必应学术中相似的文章
[Benjamin R. Shear]的文章
[sean f. reardon]的文章
相关权益政策
暂无数据
收藏/分享
文件名: wp19-05-v042020.pdf
格式: Adobe PDF
此文件暂不支持浏览
文件名: wp19-05-v092019.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。