Gateway to Think Tanks
来源类型 | Publication |
Using Pooled Heteroskedastic Ordered Probit Models to Improve Small-Sample Estimates of Latent Test Score Distributions | |
Benjamin R. Shear; sean f. reardon | |
发表日期 | 2020 |
出版年 | 2020 |
语种 | 英语 |
摘要 | This paper describes an extension to the use of heteroskedastic ordered probit (HETOP) models to estimate latent distributional parameters from grouped, ordered-categorical data by pooling across multiple waves of data. We illustrate the method with aggregate proficiency data reporting the number of students in schools or districts scoring in each of a small number of ordered “proficiency” levels. HETOP models can be used to estimate means and standard deviations of the underlying (latent) test score distributions, but may yield biased or very imprecise estimates when group sample sizes are small. A simulation study demonstrates that the pooled HETOP models described here can reduce the bias and sampling error of standard deviation estimates when group sample sizes are small. Analyses of real test score data demonstrate use of the models and suggest the pooled models are likely to improve estimates in applied contexts. |
主题 | Poverty and Inequality |
子主题 | Methodology and Measurement ; Other ; Societal Context |
URL | https://cepa.stanford.edu/content/using-pooled-heteroskedastic-ordered-probit-models-improve-small-sample-estimates-latent-test-score-distributions |
来源智库 | Center for Education Policy Analysis (United States) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/491892 |
推荐引用方式 GB/T 7714 | Benjamin R. Shear,sean f. reardon. Using Pooled Heteroskedastic Ordered Probit Models to Improve Small-Sample Estimates of Latent Test Score Distributions. 2020. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
wp19-05-v042020.pdf(926KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 | ||
wp19-05-v092019.pdf(1177KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。