G2TT
来源类型Report
规范类型报告
DOIhttps://doi.org/10.7249/RR1162
来源IDRR-1162-COMMASS
When Race/Ethnicity Data Are Lacking: Using Advanced Indirect Estimation Methods to Measure Disparities
Allen Fremont; Joel S. Weissman; Emily Hoch; Marc N. Elliott
发表日期2016-03-28
出版年2016
页码8
语种英语
结论 When Race/Ethnicity Data Are Lacking: Using Advanced Indirect Estimation Methods to Measure Disparities | RAND
摘要

A key aim of U.S. health care reforms is to ensure equitable care while improving quality for all Americans. Limited race/ethnicity data in health care records hamper efforts to meet this goal. Despite improvements in access and quality, gaps persist, particularly among persons belonging to racial/ethnic minority and low-income groups. This report describes the use of indirect estimation methods to produce probabilistic estimates of racial/ethnic populations to monitor health care utilization and improvement. One method described, called Bayesian Indirect Surname Geocoding, uses a person's Census surname and the racial/ethnic composition of their neighborhood to produce a set of probabilities that a given person belongs to one of a set of mutually exclusive racial/ethnic groups. Advances in methods for estimating race/ethnicity are enabling health plans and other health care organizations to overcome a long-standing barrier to routine monitoring and actions to reduce disparities in care. Though these new estimation methods are promising, practical knowledge and guidance on how to most effectively apply newly available race/ethnicity data to address disparities can be greatly extended.

目录 When Race/Ethnicity Data Are Lacking: Using Advanced Indirect Estimation Methods to Measure Disparities | RAND
主题Health Care Access ; Health Care Quality ; Health Disparities ; Statistical Analysis Methodology
URLhttps://www.rand.org/pubs/research_reports/RR1162.html
来源智库RAND Corporation (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/522993
推荐引用方式
GB/T 7714
Allen Fremont,Joel S. Weissman,Emily Hoch,et al. When Race/Ethnicity Data Are Lacking: Using Advanced Indirect Estimation Methods to Measure Disparities. 2016.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
RAND_RR1162.pdf(94KB)智库出版物 限制开放CC BY-NC-SA浏览
x1495316223673.jpg.p(5KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Allen Fremont]的文章
[Joel S. Weissman]的文章
[Emily Hoch]的文章
百度学术
百度学术中相似的文章
[Allen Fremont]的文章
[Joel S. Weissman]的文章
[Emily Hoch]的文章
必应学术
必应学术中相似的文章
[Allen Fremont]的文章
[Joel S. Weissman]的文章
[Emily Hoch]的文章
相关权益政策
暂无数据
收藏/分享
文件名: RAND_RR1162.pdf
格式: Adobe PDF
文件名: x1495316223673.jpg.pagespeed.ic.FIDABlIhsC.jpg
格式: JPEG

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。