G2TT
来源类型Report
规范类型报告
DOIhttps://doi.org/10.7249/RRA341-1
来源IDRR-A341-1
Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 1, Findings and Recommendations
Lance Menthe; Dahlia Anne Goldfeld; Abbie Tingstad; Sherrill Lingel; Edward Geist; Donald Brunk; Amanda Wicker; Sarah Lovell; Balys Gintautas; Anne Stickells; et al.
发表日期2021-01-27
出版年2021
语种英语
结论
  • Many analytic tasks can be fully or partially automated, although human involvement will continue to be necessary in more-complex tasks.
  • AI/ML can free analysts to focus on solving intelligence problems and developing supporting technologies to make analysis more efficient.
  • Analysts will require new skills both to facilitate use of AI/ML and to take advantage of opportunities to conduct more-advanced analysis.
摘要

There is growing demand for the Air Force Distributed Common Ground System (AF DCGS) to analyze sensor data. Getting the right intelligence to the right people at the right time is increasingly difficult as the amount of data grows and timelines shrink. The need to exploit all collections limits the ability of analysts to address higher-level intelligence problems. Current tools and databases do not facilitate access to needed information.

,

Air Force/A2 asked researchers at RAND Project AIR FORCE to analyze how new tools and technologies can help meet these demands, including how artificial intelligence (AI) and machine learning (ML) can be integrated into the analysis process. PAF assessed AF DCGS tools and processes, surveyed the state of the art in AI/ML methods, and examined best practices to encourage innovation and to incorporate new tools.

目录 Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 1, Findings and Recommendations | RAND
主题Intelligence Analysis ; Intelligence Collection ; Machine Learning ; Military Logistics ; United States Air Force
URLhttps://www.rand.org/pubs/research_reports/RRA341-1.html
来源智库RAND Corporation (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/524349
推荐引用方式
GB/T 7714
Lance Menthe,Dahlia Anne Goldfeld,Abbie Tingstad,et al. Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 1, Findings and Recommendations. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
RAND_RRA341-1.pdf(2283KB)智库出版物 限制开放CC BY-NC-SA浏览
x1611757305920.jpg.p(3KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lance Menthe]的文章
[Dahlia Anne Goldfeld]的文章
[Abbie Tingstad]的文章
百度学术
百度学术中相似的文章
[Lance Menthe]的文章
[Dahlia Anne Goldfeld]的文章
[Abbie Tingstad]的文章
必应学术
必应学术中相似的文章
[Lance Menthe]的文章
[Dahlia Anne Goldfeld]的文章
[Abbie Tingstad]的文章
相关权益政策
暂无数据
收藏/分享
文件名: RAND_RRA341-1.pdf
格式: Adobe PDF
文件名: x1611757305920.jpg.pagespeed.ic.iOUBznJQd0.jpg
格式: JPEG

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。