G2TT
来源类型Project
规范类型研究项目
Exploring the use of machine learning to detect environmental changes and management options affecting soil carbon storage and greenhouse gas emissions
Matthew Fielding
开始日期2021
结束日期2021
语种英语
概述Using innovative technologies we are investigating new methods to measure and monitor soil organic carbon stocks quickly and at scale.
摘要Using artificial intelligence, machine learning, and remote sensing technologies, we are investigating new methods to measure and monitor soil organic carbon stocks quickly and at scale. Our vision is a global monitoring system that will lead to more informed climate strategies.
主题Climate : Adaptation, Mitigation ; Governance : Innovation
标签soils ; technology ; methodology
URLhttps://www.sei.org/projects-and-tools/projects/machine-learning-soil-carbon-storage-ghg-emissions/
来源智库Stockholm Environment Institute (Sweden)
资源类型智库项目
条目标识符http://119.78.100.153/handle/2XGU8XDN/527367
推荐引用方式
GB/T 7714
Matthew Fielding. Exploring the use of machine learning to detect environmental changes and management options affecting soil carbon storage and greenhouse gas emissions. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Matthew Fielding]的文章
百度学术
百度学术中相似的文章
[Matthew Fielding]的文章
必应学术
必应学术中相似的文章
[Matthew Fielding]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。