G2TT
来源类型Discussion paper
规范类型论文
来源IDDP5289
DP5289 Optimal Delegation
Niko Matouschek; Ricardo Alonso
发表日期2005-10-23
出版年2005
语种英语
摘要This paper explores the usefulness of bagging methods in forecasting economic time series from linear multiple regression models. We focus on the widely studied question of whether the inclusion of indicators of real economic activity lowers the prediction mean-squared error of forecast models of US consumer price inflation. We study bagging methods for linear regression models with correlated regressors and for factor models. We compare the accuracy of simulated out-of-sample forecasts of inflation based on these bagging methods to that of alternative forecast methods, including factor model forecasts, shrinkage estimator forecasts, combination forecasts and Bayesian model averaging. We find that bagging methods in this application are almost as accurate or more accurate than the best alternatives. Our empirical analysis demonstrates that large reductions in the prediction mean squared error are possible relative to existing methods, a result that is also suggested by the asymptotic analysis of some stylized linear multiple regression examples.
主题International Macroeconomics
关键词Bootstrap aggregation Bayesian model averaging Forecast combination Factor models Shrinkage estimation Forecast model selection Pre-testing
URLhttps://cepr.org/publications/dp5289
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/534164
推荐引用方式
GB/T 7714
Niko Matouschek,Ricardo Alonso. DP5289 Optimal Delegation. 2005.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Niko Matouschek]的文章
[Ricardo Alonso]的文章
百度学术
百度学术中相似的文章
[Niko Matouschek]的文章
[Ricardo Alonso]的文章
必应学术
必应学术中相似的文章
[Niko Matouschek]的文章
[Ricardo Alonso]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。