G2TT
来源类型Discussion paper
规范类型论文
来源IDDP6223
DP6223 Asset Pricing with Adaptive Learning
Chryssi Giannitsarou; Eva Carceles-Poveda
发表日期2007-04-23
出版年2007
语种英语
摘要We study the extent to which self-referential adaptive learning can explain stylized asset pricing facts in a general equilibrium framework. In particular, we analyze the effects of recursive least squares and constant gain algorithms in a production economy and a Lucas type endowment economy. We find that recursive least squares learning has almost no effects on asset price behaviour, since the algorithm converges relatively fast to rational expectations. On the other hand, constant gain learning may contribute towards explaining the stock price and return volatility as well as the predictability of excess returns in the endowment economy. In the production economy, however, the effects of constant gain learning are mitigated by the persistence induced by capital accumulation. We conclude that, contrary to popular belief, standard self-referential learning cannot fully resolve the asset pricing puzzles observed in the data.
主题Financial Economics ; International Macroeconomics
关键词Adaptive learning Asset pricing Excess returns Predictability
URLhttps://cepr.org/publications/dp6223
来源智库Centre for Economic Policy Research (United Kingdom)
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/535080
推荐引用方式
GB/T 7714
Chryssi Giannitsarou,Eva Carceles-Poveda. DP6223 Asset Pricing with Adaptive Learning. 2007.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chryssi Giannitsarou]的文章
[Eva Carceles-Poveda]的文章
百度学术
百度学术中相似的文章
[Chryssi Giannitsarou]的文章
[Eva Carceles-Poveda]的文章
必应学术
必应学术中相似的文章
[Chryssi Giannitsarou]的文章
[Eva Carceles-Poveda]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。